中国标准文献分类号

T/CHES

中国水利学会标准

T/CHES XX—2020

水质 氰化物的测定 连续流动分析-分光光度法

Water quality – Determination of Cyanide by

Continuous Flow Analysis Spectrophotometry

(征求意见稿)

2020-xx-xx 发布

2020-xx-xx 实施

中国水利学会 发布

目 次

1	适用范围	4
2	规范性引用文件	4
3	术语和定义	4
	3.1 游离氰化物	4
	3.2 总氰化物	4
4	方法原理	4
	4.1 连续流动分析仪工作原理	4
	4. 2 总氰化物化学反应原理	5
	4.3 游离氰化物化学反应原理	5
5	试剂和材料	5
6	仪器和设备	8
7	样品	8
	7.1 样品的采集	8
	7. 2 样品的保存	8
8	分析步骤	8
	8.1 样品干扰的消除	8
	8.2 仪器条件	9
	8. 2. 1 仪器调试	9
	8. 2. 2 灵敏度和噪音检查	9
	8.3 标准曲线绘制	9
	8.4 样品分析	9

8.5 注意事项	9
9 实验数据处理	10
9.1 结果计算	10
9.2 结果表示	10
10 质量保证与控制	10
10.1 质量保证	10
10.2 质量控制	10
11 检出限、精密度和准确度	11
11.1 精密度	11
11.2 准确度	11
12 废液处理	11
附录	12
检出限、精密度和准确度数据表	12
表 1-1 游离氰化物方法检出限	12
表 1-2 总氰化物方法检出限	12
表 2-1 游离氰化物方法精密度	13
表 2-2 总氰化物方法精密度	14
表 3-1 游离氰化物方法准确度(有证标准物质)	15
表 3-2 总氰化物方法准确度(有证标准物质)	15
表 3-3 游离氰化物方法准确度(加标回收测试)	16
表 3-4 总氰化物方法准确度(加标回收测试)	16
参考文献	17

前 言

本标准依据 GBT 1.1-2009《标准化工作导则 第1部分:标准的结构和编写》和 GB/T 20001.4-2015《标准编写规则 第4部分:试验方法标准》的要求起草。

本标准规定了测定水中氰化物的连续流动分析-分光光度法。

本标准为首次发布。

本标准由中国水利学会组织制订。

本标准主要起草单位:中国水利水电科学研究院、辽宁省河库管理服务中心(辽宁省水文局)、 长江水利委员会水文局

本标准起草人: 万晓红 李云鹏 吴文强 徐东昱 钱宝 赵雪松 张盼伟 李耀伟 李昆 葛秋 白伟锋 赵晓辉 田英 李保

本标准验证单位:太湖流域水文水资源监测中心(太湖流域水环境监测中心)、上海市水文总站、 上海市闵行区水文站、长江水利委员会水文局长江口水文水资源勘测局、

辽宁省营口水文局、辽宁省铁岭水文局、黄河三门峡库区水环境监测中心 本标准由中国水利学会解释。

水质 氰化物的测定 连续流动分析-分光光度法

警示: 氰化物和吡啶属于剧毒物质,操作时应按规定使用防护设备,如通风厨、防护服、抗溶剂手套等,避免实验人员与这些化合物的直接接触,检测后的残渣废液应做妥善的安全处理。

1 适用范围

本标准规定了测定水中氰化物的连续流动分析-分光光度法。

本标准适用于地表水、地下水、饮用水、生活污水和工业废水中氰化物的测定。

当检测池光程为 50mm 时,本方法的检出限为 0.0005mg/L,测定范围为 0.002mg/L~0.500mg/L。对于浓度高于方法测定上限的样品,应经适当稀释后进行测定。

2 规范性引用文件

本标准内容引用了下列文件中的条款。凡是不注明日期的引用文件,其有效版本适用于本标准。

GB/T 6682 分析实验室用水规格和试验方法

SL 219 水环境监测规范

SL/Z 390 水环境监测实验室安全技术导则

3 术语和定义

3.1 游离氰化物

全部简单氰化物(多为碱金属和碱土金属的氰化物,铵的氰化物)和锌氰络合物的总和,不包括铁 氰络合物、铜氰络合物、镍氰络合物、钴氰络合物和硫氰化物。

3.2 总氰化物

包括有机氰化物、游离氰化物和绝大部分络合氰化物(锌氰络合物、铁氰络合物、镍氰络合物、铜 氰络合物等)的总和,不包括钴氰络合物和硫氰化物。

4 方法原理

4.1 连续流动分析仪工作原理

试样与试剂在蠕动泵的推动下进入化学反应模块,在密闭的管路中连续流动,被气泡按一定间隔规 律地隔开,并按特定的顺序和比例混合、在线紫外消解(总氰化物适用)、蒸馏、加热反应,显色反应 完全后进入流动检测池进行光度检测。

4.2 总氰化物化学反应原理

样品中的络合氰化物在 pH3.8 时被 UVB 紫外灯(波长 312nm)分解,通过在 125℃和真空的条件下在线蒸馏,释放出氰化氢。在弱酸性条件下通过与氯氨 T 反应生成氯化氰,然后与异烟酸及 1,3-二甲基巴比妥酸反应形成红色化合物,于波长 600nm 处测量吸光度,其吸光度与氰化物浓度成正比。

4.3 游离氰化物化学反应原理

测定试样中的游离氰化物时需关闭 UVB 灯,并在样品流中加入硫酸锌溶液,使铁氰化物以铁氰化锌的形式沉淀下来,剩余游离氰化物在 pH3.8 时通过 125℃和真空的条件在线蒸馏,释放出氰化氢。在弱酸性条件下通过与氯氨 T 反应生成氯化氰,然后与异烟酸及 1,3-二甲基巴比妥酸反应形成红色化合物,于波长 600nm 处测量吸光度,其吸光度与氰化物浓度成正比。

5 试剂和材料

除非另有说明,实验室用水为二级以上纯水;分析时均使用符合国家标准的分析纯试剂。

- 5.1 柠檬酸 (C₆H₈O₇ H₂O)。
- 5.2 氢氧化钠 (NaOH)。
- 5.3 盐酸 (HCl, 37%)。
- 5.4 硫酸锌 (ZnSO₄.7H₂O)。
- 5.5 邻苯二甲酸氢钾 (C₈H₅KO₄)。
- 5.6 氯氨 T ($C_7H_7CINNaO_2S 3H_2O$)。
- 5.7 1,3-二甲基巴比妥酸 (C₆H₈N₂ O₃)。
- 5.8 异烟酸 (C₆H₅ N O₂)。
- 5.9 氰化钾 (KCN)。
- 5.10 十二烷基聚乙二醇醚 (C₅₈H₁₁₈O₂₄)。
- 5.11 氯化钠 (NaCl): 基准试剂。在 600℃下干燥 1h,干燥器内冷却,待用。
- 5.12 硝酸银 (AgNO₃)。
- 5.13 对二甲氨基亚苄基罗丹宁(试银灵, $C_{12}H_{12}N_2OS_2$)。
- 5.14 铬酸钾 (K₂CrO₄)。
- 5.15 丙酮 (CH₃COCH₃)。
- 5.16 亚硫酸钠(Na₂SO₃)。
- 5.17 氨基磺酸 (NH₂SO₃H)。
- 5.18 碳酸镉 (CdCO₃)。
- 5.19 碳酸铅 (PbCO₃)。
- 5.20 十二烷基聚乙二醇醚溶液(30%): 称取 30g 十二烷基聚乙二醇醚(5.10)溶于 100mL 纯水中,可超声或稍加热溶解。

5.21 氢氧化钠溶液: c(NaOH) =1.0mol/L。

称取 40.0g 氢氧化钠 (5.2) 溶于 500mL 纯水中, 待溶液冷却后移入 1000mL 容量瓶中, 用纯水定容并混匀。

5.22 盐酸溶液: c (HCl) =1.0mol/L。

移取 83ml 盐酸 (5.3) 至 500ml 烧杯中,缓慢加入约 100mL 纯水,用玻璃棒慢慢搅动,使其混合均匀,移入 1000mL 容量瓶中,用纯水定容并混匀。

5.23 蒸馏试剂:

称取 20g 柠檬酸 (5.1),溶解于 500mL 纯水中,加 16g 氢氧化钠 (5.2) 溶解,将溶液移入 1000mL 容量瓶中,用纯水定容至标线混匀。该溶液的 pH=3.8,否则可用 1mol/L 的盐酸溶液 (5.22) 或 1mol/L 的氢氧化钠溶液 (5.21) 调节 pH。

5.24 硫酸锌溶液 (用于游离氰化物测量):

称取 10.0g 硫酸锌(5.4)溶于 500mL 纯水中,移入 1000mL 容量瓶中,用纯水定容并混匀。

5.25 pH5.2 缓冲溶液:

称 2.3g 氢氧化钠 (5.2) 溶于 500mL 纯水中,加入 20.5g 邻苯二甲酸氢钾 (5.5) 溶解,移入 1000mL 容量瓶中,用纯水定容并混匀。用 1.0mol/L 的盐酸溶液 (5.22) 或 1.0mol/L 的氢氧化钠溶液 (5.21) 调节 pH=5.2 后加 1.0ml 聚氧乙烯十二烷醚 (5.20) 混匀。

5.26 氯胺 T (C₇H₇ClNNaO₂S 3H₂O) 溶液:

称取 2.0g 氯胺 T (5.6) 溶于 500mL 纯水中,移入 1000mL 容量瓶中,用纯水定容并混匀。5.27 显色剂:

称取 7.0g 氢氧化钠 (5.2) 溶于 500mL 纯水中,加入 16.8g 1,3 二甲基巴比妥酸 (5.7) 和 13.6g 异烟酸 (5.8) 搅拌溶解,移入 1000mL 容量瓶中,用纯水定容并混匀。用 1.0mol/L 的盐酸溶液 (5.22) 或 1.0mol/L 的氢氧化钠溶液 (5.21) 调节 pH=5.2。

5.28 氢氧化钠溶液: c(NaOH) =0.1mol/L。

称取 4.0g 氢氧化钠(5.2)溶于 500mL 纯水中,移入 1000mL 容量瓶中,用纯水定容并混匀。

5.29 氢氧化钠溶液: c (NaOH) =0.01mol/L。

称取 0.4g 氢氧化钠 (5.2) 溶于 500mL 纯水中,移入 1000mL 容量瓶中,用纯水定容并混匀。5.30 试银灵指示液:

称取 $0.02~\mathrm{g}$ 试银灵(5.13)溶于 $100~\mathrm{ml}$ 丙酮(5.15)中。该溶液贮存于棕色瓶中,避光保存,可保存 $1~\mathrm{周}$ 。

5.31 氯化钠标准溶液: *c* (NaCl) =0.0100 mol/L。

称取 0.2922 g 氯化钠 (5.11) 溶于适量纯水中,溶解后移入 500 ml 容量瓶中,用纯水定容并混匀。5.32 铬酸钾指示液:

称取 10.0g 铬酸钾 (5.14) 溶于适量纯水中,滴加几滴硝酸银溶液 (5.33) 至产生橙红色沉淀为止,放置过夜后过滤,用纯水稀释至 100 ml。

5.33 硝酸银标准溶液: c (AgNO₃) =0.0100 mol/L。

称取 0.8494 g 硝酸银 (5.12) 溶于适量纯水中,溶解后移入 500 ml 容量瓶中,用纯水定容并混匀。 该溶液贮存于棕色瓶中,临用前用氯化钠标准溶液 (5.27) 标定。

硝酸银标准溶液标定方法:准确量取 10.00 ml 氯化钠标准溶液(5.31)于 150 ml 锥形瓶中,加入 40 mL 纯水,加入 3~5 滴铬酸钾指示液(5.32),用硝酸银标准溶液(5.33)滴定直至溶液由黄色变成 浅砖红色为止,记录硝酸银标准溶液用量(V_I);同时,用 50 mL 纯水做空白试验,记录硝酸银标准溶液用量(V_0)。

硝酸银标准溶液的浓度按式(1)计算。

$$c = \frac{c_1 \times 10.00}{V_1 - V_0} \tag{1}$$

式中: c——硝酸银标准溶液的浓度, mol/L;

 c_I ——氯化钠标准溶液的浓度,mol/L;

 V_1 ——滴定氯化钠标准溶液时,硝酸银标准溶液的用量,mL;

 V_0 ——空白滴定时,硝酸银标准溶液的用量, mL 。

10.00——氯化钠标准溶液的体积, mL。

5.34 氰化物标准贮备液: ρ (CN)=100 mg/L。

称取 400mg 氢氧化钠(5.2), 溶于 500mL 纯水中, 加入 250 mg 氰化钾(5.9)混合溶解, 移入 1000mL 容量瓶中, 用纯水定容并混匀, 待标定。

氰化物标准贮备液标定方法: 准确量取 10.00 mL 氰化物标准贮备液(5.35) 于锥形瓶中,加入 40 mL 纯水,加入 0.25 ml 试银灵指示液(5.30),用硝酸银标准溶液(5.33) 滴定,溶液由黄色刚好变为橙红色为止,记录硝酸银标准溶液用量 (V_I) ;同时,用 50 mL 纯水作空白试验,记录硝酸银标准溶液用量 (V_0) 。该溶液需每周进行标定,或购买有证书的标准物质。

氰化物标准贮备液的浓度按式(2)计算。

$$\rho = \frac{c \times (V_1 - V_0) \times 52.04}{10.00} \times 10^3$$
(2)

式中:

 ρ ——氰化物标准贮备液的浓度,mg/L;

c ——硝酸银标准溶液浓度,mol/L;

 V_l ——滴定氰化钾标准贮备液时,硝酸银标准溶液用量,mL;

 V_0 ——空白滴定时,硝酸银标准溶液用量,mL;

52.04——氰离子(2CN)的摩尔质量, g/mol;

10.00——氰化钾标准贮备液的体积, mL。

5.35 氰化物标准使用液: ρ (CN)=10.00mg/L

准确量取 10.00ml 氰化物标准贮备液(5.34),移入 100mL 容量瓶中,用 0.01mol/L 氢氧化钠溶液(5.29) 定容并混匀。临用现配。

5.36 分析模板清洗溶液 (0.5mol/L 氢氧化钠溶液):

称取 20.0g 氢氧化钠(5.2) 溶于 500mL 纯水中,移入 1000mL 容量瓶中,用纯水定容并混匀。

6 仪器和设备

- 6.1 连续流动分析仪:由自动进样器、化学分析单元(多通道蠕动泵、歧管、泵管、混合反应圈、紫外消解装置、蒸馏装置等)、检测单元、数据处理单元等组成。检测单元需配备 50 mm 比色池和 600 nm 滤光片。
- 6.2 pH 计: 精度为 0.01。
- 6.3 天平: 精度为 0.0001 g。
- 6.4 超声波清洗仪:超声频率 40 kHz,超声功率 500 W。
- 6.5 一般实验室常用仪器和设备。

7 样品

7.1 样品的采集

- 7.1.1 采样器皿准备: 采样前,用纯水清洗所有接触样品的器皿。
- 7.1.2 管道水采样: 打开管道放水阀缓慢放水至水温及流速稳定,进行采样。
- 7.1.3 开放水体采样: 用干净的采样器从有代表性的区域中采样, 沿瓶壁小心地将样品转移到采样瓶中。
- 7.1.4 每批样品应有一个现场空白。
- 7.1.5 水样采集其他注意事项应符合 SL 219 的规定。

7.2 样品的保存

样品采集后,应立即加入氢氧化钠(5.2)固定,调节样品的 pH 至 12~12.5 之间,尽快分析测定。若需保存,应 0~4°C下避光贮存,不超过 24h。

8 分析步骤

8.1 样品干扰的消除

8.1.1 试样中存在活性氯等氧化性物质干扰测定,可在蒸馏前加亚硫酸钠(5.16)消除干扰。

- 8.1.2 试样中存在亚硝酸离子干扰测定,可在蒸馏前加氨基磺酸(5.17)消除干扰。
- 8.1.3 试样中存在硫化物干扰测定,可在蒸馏前加碳酸镉(5.18)或碳酸铅(5.19)固体粉末消除干扰。
- 8.1.4 在线蒸馏氰化氢时,试样的盐浓度高于 10g/L 时,可在测定样品前进行稀释。
- 8.1.5 干扰可通过稀释样品来消除,需通过多个稀释比测定结果的一致性和加标回收来确认。

8.2 仪器条件

8.2.1 仪器调试

- 8.2.1.1 按仪器说明书安装分析系统、设定工作参数、调试仪器。开机后,先用纯水代替试剂,检查分析 流路的密闭性和液体流动的顺畅性。仪器运行正常后将泵管依次放入其相应试剂中,待基线稳定后即可 进行测试。
- 8.2.1.2 测定总氰化物时将泵管按标识依次放入蒸馏试剂 (5.23)、纯水、pH5.2 缓冲溶液 (5.25)、氯胺 T 溶液 (5.26) 和显色剂 (5.27)。
- 8.2.1.3 测定游离氰化物时关闭紫外消解器,用硫酸锌溶液 (5.24) 替换 8.2.1.2 试剂中的纯水,其余试剂不变,操作顺序不变。

8.2.2 灵敏度和噪音检查

与基线信号值相比,标准系列最低浓度点信号值(相对峰高)应不低于3%,且信号值(相对峰高)与噪音(相对峰高)比值应不低于10:1。

8.3 标准曲线绘制

吸取适量氰化物标准使用液(5.35),用 0.01mol/L 氢氧化钠溶液(5.29)稀释至标线并混匀,制备 10 个浓度点分别为 0.000 mg/L、0.002 mg/L、0.005 mg/L、0.010 mg/L、0.050mg/L、0.100 mg/L、0.200 mg/L、0.300 mg/L、0.400 mg/L 和 0.500 mg/L 的标准曲线。

8.4 样品分析

调整仪器使其进入可测定状态,将样品编号或名称输入样品列表,并设置曲线重校点和清洗点,每 10 个样品应重校一次。然后将无色、澄清、无干扰的样品或经消除干扰后的待测样品放入样品列表中 所对应的自动进样器位置上,按照与绘制标准曲线相同的条件,进行样品的测定。

注: 若样品氰化物含量超出标准曲线线性范围,应取适量样品稀释后进样测定。

8.5 注意事项

- 8.5.1 不同型号的连续流动分析仪可参考本标准选择合适的仪器条件。
- 8.5.2 注意管路清洁,每次分析完毕后所有流路需用纯水清洗至基线平直。每周用分析模板清洗溶液

- (5.36) 冲洗 30min, 再用纯水冲洗 30min。
- 8.5.3 试剂瓶必须用纯水充分洗涤,再加入新鲜试剂,以防微生物和其他干扰的产生。
- 8.5.4 定期检查蠕动泵管是否老化,并及时更换新泵管。
- 8.5.5 在废液收集瓶中,应加入氢氧化钠 (5.2) 调节 pH≥11,以防止气态 HCN 逸出。应定期摇动废液瓶,以防在瓶中形成浓度梯度。

9 实验数据处理

9.1 结果计算

样品中氰化物的浓度, 按照公式(2)进行计算:

$$\rho = \frac{y - a}{b} \times f \tag{2}$$

式中:

 ρ ——样品中氰化物的浓度,mg/L;

γ——测定信号值(峰高);

a——标准曲线方程的截距;

b——标准曲线方程的斜率;

f——稀释倍数。

9.2 结果表示

当测定结果小于 1.00mg/L 时,结果保留小数点后三位;大于等于 1.00mg/L 时,结果保留三位有效数字。

10 质量保证与控制

10.1 质量保证

采用现场空白及实验室试剂空白控制实验过程中的污染,消除试剂、玻璃器皿和仪器中残留的污染 物干扰待测物的测定。

10.2 质量控制

10.2.1 实验室质量控制应在实验室例行检测中进行现场空白、实验室试剂空白分析,空白分析应采用平行双样测定。

10.2.2 空白试验检查

现场空白:每批样品应至少有一个现场空白,以确定样品在采集、运输、保存及分析的过程中是否受到污染。现场空白分析值应低于方法检出限。若测定结果表明有污染,应查明污染源并进行消除。

试剂空白:样品分析前应至少进行两个试剂空白试验,用于检查待测物或其它干扰物质是否在试剂和器皿中存在,试剂空白试验测定值应低于方法检出限。若测定结果表明有污染,应查明污染源并进行消除。

10.2.3 标准曲线有效性检查

10

每批样品分析均应绘制标准曲线,标准曲线的相关系数 γ≥0.999;

每分析 10 个样品需用标准曲线的中间浓度点溶液进行校准核查,其信号值(相对峰高)与标准曲线中该浓度点的信号值(相对峰高)相比,其相对偏差应≤5%,否则应重新绘制标准曲线。

11 检出限、精密度和准确度

11.1 精密度

- 11.1.1 7家实验室对游离氰化物质量浓度分别为 $0.005 \,\mathrm{mg/L}$ 、 $0.050 \,\mathrm{mg/L}$ 和 $0.400 \,\mathrm{mg/L}$ 的统一样品进行测定,实验室间相对标准偏差分别为 14.7%、2.36% 和 1.78%;重复性限分别为 $0.001 \,\mathrm{mg/L}$ 、 $0.003 \,\mathrm{mg/L}$ 和 $0.013 \,\mathrm{mg/L}$,再现性限分别为 $0.001 \,\mathrm{mg/L}$ 、 $0.004 \,\mathrm{mg/L}$ 和 $0.019 \,\mathrm{mg/L}$ 。
- 11.1.2 7家实验室对总氰化物质量浓度分别为 $0.005 \,\mathrm{mg/L}$ 、 $0.050 \,\mathrm{mg/L}$ 和 $0.400 \,\mathrm{mg/L}$ 的统一样品进行测定,实验室间相对标准偏差分别为 13.9%、2.73%和 1.82%; 重复性限分别为 $0.001 \,\mathrm{mg/L}$ 、 $0.006 \,\mathrm{mg/L}$ 和 $0.022 \,\mathrm{mg/L}$,再现性限分别为 $0.001 \,\mathrm{mg/L}$ 、 $0.008 \,\mathrm{mg/L}$ 和 $0.027 \,\mathrm{mg/L}$ 。

11.2 准确度

- 11.2.1 7家实验室对游离氰化物质量浓度分别为 0.005 mg/L、0.050 mg/L 和 0.400 mg/L 的有证标准样品进行测定,相对误差分别为- $10.0\% \sim 12.0\%$ 、- $0.80\% \sim 6.60\%$ 和- $0.79\% \sim 4.68\%$;相对误差最终值分别为 (4.71 ± 15.03) %、 (3.47 ± 4.94) %和 (0.97 ± 3.70) %。
- 11.2.2 7家实验室对总氰化物质量浓度分别为 0.0605mg/L、0.144 mg/L 和 0.288 mg/L 的有证标准样品进行测定,相对误差分别为-5.86%~4.30%、-6.65%~4.60%和-6.25%~4.04%;相对误差最终值分别为 (-1.01 ± 8.69) %、 (-1.12 ± 8.17) %和 (-2.35 ± 6.97) %。
- 11.2.3 7家实验室分别对地表水、地下水、饮用水和生活污水中游离氰化物进行了加标回收率的测定。 地表水样品加标回收率测试,加标回收率为 84.0%~106%,加标回收率最终值为(96.2±16.6)%; 地下水样品加标回收率测试,加标回收率为 93.7%~104%,加标回收率最终值为(97.2±16.5)%; 饮用水样品加标回收率测试,加标回收率为 86.0%~112%,加标回收率最终值为(98.4±16.8)%; 生活污水样品加标回收率测试,加标回收率为 82.0%~109%,加标回收率最终值为(93.9±19.1)%。
- 11.2.4 7 家实验室分别对地表水、地下水、饮用水和生活污水中总氰化物进行了加标回收率的测定。 地表水样品加标回收率测试,加标回收率为 85.0%~105%,加标回收率最终值为(96.5±12.7)%;地下水样品加标回收率测试,加标回收率为 80.0%~102%,加标回收率最终值为(91.5±15.6)%;饮用水样品加标回收率测试,加标回收率为 87.0%~107%,加标回收率最终值为(93.9±14.8)%;生活污水样品加标回收率测试,加标回收率为 81.0%~101%,加标回收率最终值为(88.7±15.8)%。

12 废液处理

实验过程中产生的废液应分类收集和保管,并做好相应标识,委托有资质的单位进行处理。

附录 检出限、精密度和准确度数据表

表 1-1 游离氰化物方法检出限

实验室号	游离氰化物			
头 独至亏	检出限(mg/L)	测定下限(mg/L)		
1	0.0003	0.001		
2	0.0005	0.002		
3	0.0002	0.001		
4	0.0006	0.002		
5	0.0004	0.002		
6	0.0003	0.001		
7	0.0002	0.001		

表 1-2 总氰化物方法检出限

实验室号	总氰化物			
头 独至 5	检出限(mg/L)	测定下限(mg/L)		
1	0.0004	0.002		
2	0.0003	0.001		
3	0.0002	0.001		
4	0.0005	0.002		
5	0.0004	0.002		
6	0.0005	0.002		
7	0.0003	0.001		

表 2-1 游离氰化物方法精密度

实验室号	样品 1			样品 2			样品 3		
关 独至与	\bar{x}_i (mg/L)	S_i (mg/L)	RSD_i (%)	\bar{x}_i (mg/L)	S_i (mg/L)	RSD_i (%)	\bar{x}_i (mg/L)	$S_i \text{ (mg/L)}$	RSD_i (%)
1	0.0045	0.0002	4.40	0.0511	0.0004	0.80	0.3999	0.0033	0.80
2	0.0052	0.0003	5.34	0.0522	0.0007	1.24	0.3977	0.0055	1.38
3	0.0055	0.0001	1.15	0.0535	0.0003	0.52	0.4060	0.0028	0.70
4	0.0034	0.0002	6.94	0.0500	0.0020	4.02	0.4000	0.0036	0.90
5	0.0053	0.0004	7.80	0.0516	0.0014	2.70	0.4029	0.0077	1.90
6	0.0048	0.0000	0.00	0.0504	0.0002	0.38	0.4000	0.0010	0.24
7	0.0047	0.0001	1.88	0.0524	0.0004	0.75	0.4187	0.0021	0.50
实验室间RSD _i (%)	14.7		2.36		1.78				
重复性限 r (mg/L)	0.001		0.003		0.013				
再现性限 R (mg/L)		0.001		0.004		0.019			

表 2-2 总氰化物方法精密度

党 孙皇日	样品 1			样品 2			样品 3		
实验室号	$\bar{x}_i \text{ (mg/L)}$	$S_i \text{ (mg/L)}$	RSD_i (%)	$\bar{x}_i \text{ (mg/L)}$	$S_i \text{ (mg/L)}$	RSD_i (%)	$\bar{x}_i \text{ (mg/L)}$	$S_i \text{ (mg/L)}$	RSD _i (%)
1	0.0046	0.0001	2.60	0.0509	0.0002	0.30	0.3946	0.0014	0.30
2	0.0044	0.0003	5.85	0.0483	0.0008	1.63	0.3938	0.0016	0.41
3	0.0051	0.0001	2.43	0.0529	0.0004	0.78	0.4010	0.0019	0.47
4	0.0044	0.0003	7.35	0.0511	0.0005	0.91	0.4020	0.0009	0.23
5	0.0060	0.0005	7.60	0.0505	0.0053	10.50	0.3994	0.0187	4.70
6	0.0057	0.0001	0.91	0.0506	0.0002	0.34	0.4007	0.0010	0.26
7	0.0043	0.0001	1.66	0.0516	0.0003	0.62	0.4160	0.0036	0.87
实验室间RSD _i (%)	13.9		2.73		1.82				
重复性限 r (mg/L)	0.001		0.006		0.022				
再现性限 R (mg/L)		0.001		0.008			0.027		

表 3-1 游离氰化物方法准确度(有证标准物质)

	样品 1		样。	样品 2		品 3
实验室号	平均值	相对误差	平均值	相对误差	平均值	相对误差
	(mg/L)	(%)	(mg/L)	(%)	(mg/L)	(%)
1	0.0045	-10.00	0.0511	2.10	0.3999	0.00
2	0.0055	8.54	0.0529	5.54	0.3969	-0.79
3	0.0055	10.00	0.0533	6.60	0.4080	2.00
4	0.0044	12.00	0.0514	2.80	0.3987	0.32
5	0.0053	6.00	0.0516	3.20	0.4029	0.70
6	0.0050	0.00	0.0496	-0.80	0.3994	-0.15
7	0.0047	6.40	0.0524	4.82	0.4187	4.68
<u>RE</u> (%)	4.71		3.47		0.97	
S _{RE} (%)	7.	52	2.47		1.85	

表 3-2 总氰化物方法准确度(有证标准物质)

	样品 1		样品 2		样品3	
实验室号	平均值	相对误差	平均值	相对误差	平均值	相对误差
	(mg/L)	(%)	(mg/L)	(%)	(mg/L)	(%)
1	0.0604	-0.20	0.1434	-0.40	0.2807	-2.50
2	0.0572	-5.86	0.1350	-6.65	0.2715	-6.08
3	0.0624	3.14	0.1420	-1.39	0.2800	-2.78
4	0.0575	-4.93	0.1396	-3.04	0.2818	-2.16
5	0.0631	4.30	0.1506	4.60	0.2861	-0.70
6	0.0572	-5.45	0.1376	-4.44	0.2700	-6.25
7	0.0617	1.90	0.1389	3.51	0.2764	4.04
<u>RE</u> (%)	-1.01		-1.12		-2.35	
S _{RE} (%)	4.	34	4.08		3.49	

表 3-3 游离氰化物方法准确度(加标回收测试)

分 派 中	实际样品(%)						
实验室号	地表水	地下水	饮用水	污废水			
1	101	102	101	95.7			
2	104	99.0	98.8	109			
3	97.5	99.5	104	99.5			
4	93.0	93.7	91.5	84.7			
5	106	104	112	98.5			
6	84.0	80.0	86.0	82.0			
7	87.8	102	96.0	87.9			
P	96.2	97.2	98.4	93.9			
$S_{ar{P}}$	8.28	8.26	8.42	9.54			

表 3-4 总氰化物方法准确度(加标回收测试)

实验室号	实际样品(%)						
大	地表水	地下水	饮用水	污废水			
1	100	83.1	94.8	90.6			
2	96.3	92.2	99.5	84			
3	105	102	107	101			
4	93.0	90.7	87.5	82.8			
5	95.5	94.5	94.7	97.5			
6	85.0	80.0	87.0	81.0			
7	101	98.8	87.0	83.9			
$\overline{\overline{P}}$	96.5	91.5	93.9	88.7			
$S_{ar{P}}$	6.35	7.81	7.39	7.90			

参考文献

- [1] GB3838—2002 地表水环境质量标准
- [2] SL/Z390—2007 水环境监测实验室安全技术导则
- [3] ISO 14403-2 水质-流动分析法(FIA 和 CFA)测定总氰化物和游离氰化物含量-第二部分:连续流动分析法(CFA)
- [4] GB/T 5750—2006 生活饮用水标准检验方法
- [5] 水和废水监测分析方法(第四版)中国环境科学出版社