ICS 编号 CCS 编号

团体标准

T/CHES XXX—20XX

洪水实时模拟技术规程

Technical Regulation of Real-Time Simulation for Floods

(征求意见稿)

20XX-XX-XX 发布

20XX-XX-XX 实施

中国水利学会 发布

前 言

依据水利部水利行业标准制修订计划,按照《标准化工作导则 第1部分:标准的结构和编写》(GB/T 1.1-2009)、《水利技术标准编写规定》(SL 1-2014)的要求,编制本规程。

本规程共6章和7个附录,主要技术内容有:

- ——基础资料
- ——模型及计算方法选择
- ——洪水实时模拟模型构建
- ——洪水实时模拟模型接口

本规程为全文推荐。

本规程批准部门: 中华人民共和国水利部

本规程主持机构:水利部水旱灾害防御司

本规程解释单位:珠江水利委员会珠江水利科学研究院

本规程主编单位:珠江水利委员会珠江水利科学研究院

本规程出版、发行单位: 中国水利水电出版社

本规程主要起草人:

本规程审查会议技术负责人:

本规程体例格式审查人:

本规程在执行过程中,请各单位注意总结经验,积累资料,随时将有关意见和建议反馈给水利部国际合作与科技司(通信地址:北京市西城区白广路二条 2 号;邮编:100053;电话:010-63204533;电子邮箱:bzh@mwr.gov.cn),以供今后修订时参考。

目 次

1	总则		1
0	₽ \;#	与定义	c
2			
3	基础	资料	4
4	模型	及计算方法选择	5
	4. 1	水动力模型选择	
	4. 1		
	4. 3	**=******	
_		实时模拟模型构建	
5	洪小		
	5. 1	基本要求	
	5. 2	建模范围确定	
	5. 3	计算断面和网格剖分	
	5. 4	初始及边界条件设置	
	5. 5	模型率定验证	
	5. 6	计算耗时控制	
	5. 7	计算结果分析与展示	
	5.8	洪水实时模拟应用模式	٥
6	洪水	实时模拟模型接口	10
	6. 1	基本要求	10
	6.2	数据交互流程	10
	6.3	数据类型定义	
	6.4	水文气象数据接口	
	6.5	河网结构数据接口	
	6.6	网格地形数据接口	
	6. 7	模型参数接口	
	6.8	模拟结果数据接口	
	6. 9	模型运行管理数据接口	19
附:	录 A	一维水动力模型	21
附:	录 B	二维水动力模型	22
附:	录 C	风-浪-流多场耦合二维水动力模型	24
[]	录 D	一维-二维耦合水动力模型	
附:	录 E	CPU 多核并行计算模式	
附:	录 F	GPU 并行计算模式	34
[計-	录 C	基于区域分解的分布式并行计算模式	36

1 总则

- 1.0.1 为规范洪水实时模拟的技术要求、技术方法和模型接口,提高洪水模拟成果的科学性、准确性、时效性和通用性,制定本规程。
- 1.0.2 洪水实时模拟包括水文模拟和水动力模拟,本规程针对洪水实时模拟中的水动力模拟,即以实时水文预报结果或实测洪水过程为边界,结合水工程实时运行调度信息,通过水动力模型快速计算得到洪(潮)水在河道、河口及淹没区的演进过程,其一般通过水动力数学模型的系统集成方式应用于洪水实时预报预警。
- 1.0.3 本规程适用于流域和区域的洪水实时预报预警中河道及河网洪水、河口沿海风暴潮、堤坝溃决(漫溢)洪水的实时数值模拟,以及模型系统集成中数据接口设计。
- 1.0.4 本规程的应用场景包括水流在河道、地表、河口及外海区域传播过程的实时、滚动模拟。洪水实时模拟技术可实现流域尺度洪水过程的精细化、快速动态计算,为洪水实时预报预警、水工程防灾调度、防汛应急抢险等业务提供重要技术支撑。本规程不含城市内涝及管网模拟应用场景。
- 1.0.5 本规程适用的洪水实时模拟对象包括:
 - 1 山区及平原河流洪水,感潮及非感潮河网洪水。
 - 2 外海-河口区的天文潮及风暴潮。
 - 3 溃坝洪水、溃堤洪水、漫堤洪水。
- 1.0.6 洪水实时模拟中,实时信息主要包括河道、湖库等水文边界的实时状态以及实时预报信息。洪水实时模拟应通过接入实时监测数据和预报数据,转换为模型计算所需的初始场和边界条件,进行模型滚动计算,实时更新计算结果。
- 1.0.7 本规程主要引用以下标准:
 - 《洪水风险图编制导则》(SL 483-2017)
 - 《溃坝洪水模拟技术规程》(SL/T164-2019)
 - 《海岸与河口潮流泥沙模拟技术规程》(JTST231-2-2010)
 - 《内河航道与港口水流泥沙模拟技术规程》(JST231-4-2018)
 - 《水利信息数据库表结构及标识符编制规范》(SL-478-2010)
 - 《实时雨水情数据库表结构与标识符》(SL323-2011)
 - 《实时工情数据库表结构及标识符》(SL 577-2013)
 - 《热带气旋等级》(GB/T 19201-2006)
 - 《台风涡旋测风数据判别规范》(GB/T 36745-2018)
- 1.0.8 洪水实时模拟除应符合本规程规定外,尚应符合国家现行有关标准的规定。

2 术语与定义

2.0.1 洪水实时模拟 Real-time Simulation for floods

基于河道、湖库等水文边界的实时状态以及实时预报信息,运用一维、二维及其耦合水动力模型,形成洪水实时-滚动模拟。洪水实时模拟技术可实现流域尺度洪水过程的精细化、快速动态计算,为洪水实时预报预警、水工程防灾调度、防汛应急抢险等业务提供重要技术支撑。

2.0.2 洪水实时模拟技术 Technique of Real-time Simulation for floods

通过高性能数值模拟,在较短时间内快速复演和预报洪水在河道及两岸陆域的演进及淹没过程,以及潮水在外海及河口区的传播过程。

2.0.3 感潮河网 Tidal River Network

河道水动力过程受外海潮汐涨落影响的河网。

2.0.4 河道及河网洪水模拟 Simulation of Floods in River Network 通过运用河网水动力数学模型,模拟洪水在河道及河网中的传播过程。

2.0.5 河口沿海风暴潮模拟 Simulation of Storm Surge in Estuaries

通过运用风暴潮水动力数学模型,模拟台风作用下潮水在外海及河口沿海区的运动过程。

2.0.6 堤坝溃决(漫溢) Dam/Dike-Break and Overtopping

坝体、堤防出现溃口或洪水漫顶,包括溃坝、漫坝、溃堤、漫堤。

2.0.7 计算时间步长 Computational Time Step

模型计算一步所代表的实际时间长度。

2.0.8 超标准洪水 Exceeding Standard Flood

超过防洪工程设计标准或超过防洪体系设计防御能力的洪水。

2.0.9 CPU 并行计算 CPU Parallel Computing

运用中央处理器(Central Processing Unit,简称 CPU)的多个计算核心或多个 CPU 设备进行的并行计算。

2.0.10 GPU 并行计算 GPU Parallel Computing

运用图形处理器(Graphic Processing Unit,简称 GPU)多个计算核心或多个 GPU 设备进行的并行计算。

2.0.11 分布式并行计算 Distributed Parallel Computing

把整体计算问题分解成多个子问题,并把各子问题分配给不同的计算机进行同时处理, 最后把这些计算结果综合起来得到最终的结果。

2.0.12 模型数据接口 Model Data Interface

洪水预报预警业务应用系统与洪水实时模拟模型的数据通信渠道与规则。

2.0.13 数据交互流程 Data Interaction Process

洪水预报预警业务应用系统与洪水实时模拟模型基于数据接口搭建数据连接,进行数据通信的概化流程。

2.0.14 初始条件 Initial Condition

模型初始计算时刻各模拟要素(水位、流量、流速等)的初始状态。

2.0.15 边界条件 Boundary Condition

模型在求解区域边界上的变量随时间和地点的变化规律。在洪水实时模拟中,边界条件通常包括上游预报(或实测)流量过程、下游预报(或实测)水位过程或水位流量关系等。2.0.16 计算耗时 Calculating time

洪水实时模拟模型滚动计算一次所需要耗费的时间。

3 基础资料

- 3.1.1 洪水实时模拟所需的基础资料包括基础地理资料、水文气象资料、工程调度资料、历史洪灾资料。
- 3.1.2 基础地理资料内容及要求:
 - 1 基础地理资料包括地形资料和其它基础地理资料:
 - 1) 地形资料,包括河道、水库、湖泊的水下地形资料,洪水风险区陆域地形资料, 以及河口及外海水下地形资料;
 - 2) 其它基础地理资料,包括交通道路、土地利用、遥感影像等。
 - 2 资料精度要求:
 - 1)河道、水库、湖泊的水下地形资料及河道断面资料比例尺不小于 1: 2000。河道 实测断面间距要求参见 5.3.1 节,断面横向测量范围应覆盖堤岸;
 - 2) 洪水风险区陆域地形资料比例尺不小于1:10000; 城市地区地形资料比例尺宜采用1:500, 最小不小于1:2000;
 - 3)河口浅海区地形资料比例尺不小于1:10000,外海水下地形资料比例尺不小于1:25000:
 - 4) 遥感影像宜采用分辨率不低于 2m 的正射影像。
 - 3 所收集基础地理资料应为最新生成或更新数据。
- 3.1.3 水文气象资料内容及要求:
- 1 水文气象资料包括降雨、水位、流量、潮汐、台风等实测及设计资料,水文控制站水位-流量关系,湖泊、水库、蓄滞洪区的水位-面积-容积关系等。
- 2 水文资料应满足可靠性、一致性和代表性要求。用于模型参数率定验证时,宜尽量收集与地形资料年份接近的水文资料。
- 3.1.4 工程调度资料内容及要求:
- 1 工程调度资料包括水库、水闸、泵站、堤防、桥梁、涵洞、堰坝等工程资料,各级防洪预案、洪水调度方案、防御洪水方案,水库、蓄滞洪区、水闸、泵站防洪调度运用规则及工程运行状态实时监测数据接口等。
 - 2 工程调度资料应是正式发布或相关主管部门认可的权威资料。
- 3.1.5 历史洪水资料内容及要求:
- 1 历史洪水资料包括实测洪水过程及河道沿程及淹没区水位、淹没范围、淹没历时等历史洪水水文特征,以及堤坝溃决(漫溢)情况、洪水发生当时的工程和工程调度情况等。
 - 2 历史洪水资料应满足可靠性要求。
- 3.1.6 当地形、水文资料范围和精度不能满足洪水实时模拟建模要求时,需开展补充测量和测验工作。
- 3.1.7 当模拟区域内的地形、土地利用、工程调度等基础数据发生较大变化时,应补充收集相关资料并对模型基础数据进行更新。

4 模型及计算方法选择

4.1 水动力模型选择

- 4.1.1 洪水实时模拟模型应满足下列一般性要求:
 - 1 模型稳定性好,在任意初始场条件下可快速收敛,能适应干河床、复杂边界及地形。
 - 2 模型计算速度快,能满足洪水实时预报预警的时效性要求。
 - 3 模拟结果可靠,能合理反映洪水淹没的实际情况。
- 4.1.2 洪水实时模拟宜根据不同对象选用不同的水动力模型。其中,河道及河网洪水模拟宜采用附录 A 所列一维水动力模型或附录 B 所列二维水动力模型;河口沿海风暴潮模拟宜采用附录 C 所列风-浪-流多场耦合二维水动力模型;堤坝溃决(漫溢)洪水模拟宜采用附录 D 所列一维-二维耦合水动力模型。
- 4.1.3 河道及河网洪水数学模型宜同时适应山区陡峭河道及平原河网,且在任意初始场条件下可快速计算收敛。模型求解方法宜采用显式有限体积法、隐式有限差分法等计算方法。
- 4.1.4 河口沿海风暴潮模型宜考虑风-浪-流多场耦合作用。河口沿海风暴潮模型宜支持多种常见的台风气压场及风场。模型求解方法宜采用有限体积法、有限差分法、欧拉-拉格朗日法等计算方法。
- 4.1.5 堤坝溃决(漫溢)洪水数学模型宜同时模拟急流和缓流,且计算方法需具备守恒性和激波捕捉能力。模型求解方法宜采用有限体积法、有限元法、有限差分法等计算方法。
- 4.1.6 水动力模型宜优先选用具有自主知识产权的国产模型软件。

4.2 快速计算方法选择

- 4.2.1 洪水快速计算方法选择需要综合考虑快速计算格式、动态计算时间步长、并行计算模式等方面。
- 4.2.2 二维洪水数学模型宜采用一阶或二阶精度快速计算格式。
- 4.2.3 二维洪水数学模型宜采用自适应动态调整的计算时间步长。当网格数量多且存在局部加密网格时,可采用局部时间步长法。
- 4.2.4 一维水动力模型与二维水动力模型耦合求解时,宜采用时间步长自适应匹配方法。
- 4.2.5 一维、二维水动力模型计算模式包括 CPU 串行计算模式、CPU 单机多核并行计算模式、GPU 单机并行模式、基于区域分解技术的分布式并行计算模式等,在满足计算耗时控制前提下,宜优先选用 CPU 串行计算模式或 CPU 单机多核并行计算模式。CPU 单机多核并行计算模式见附录 E,GPU 单机并行计算模式见附录 F,基于区域分解技术的分布式并行计算模式见附录 G。

4.3 计算模式并行化要求

- 4.3.1 水动力并行计算模式一般以串行计算模式为基础,在对串行计算模式进行并行化升级前,需要保证串行计算代码的准确性。
- 4.3.2 CPU 多核并行化设计宜运用数组合并、循环交换、关键数据提取、循环合并等方法进行 Cache 命中率优化设计,以提高 CPU 多核并行计算效率。
- 4.3.3 GPU 并行化设计宜尽量减少 CPU 与 GPU 之间数据传递,以提高 GPU 并行计算效率。
- 4.3.4 分布式并行化设计宜尽量减少进程间消息传递的等待时间和通信时间,以提高分布式并行计算效率。

5 洪水实时模拟模型构建

5.1 基本要求

- 5.1.1 洪水实时模拟主要技术流程包括建模范围确定、计算断面和网格剖分、边界条件设置、模型率定验证、计算耗时控制、计算结果分析与展示。
- 5.1.2 洪水实时模拟需要同时兼顾模拟精度和计算效率。

5.2 建模范围确定

- 5.2.1 河道及河网洪水、堤坝溃决(漫溢)洪水的建模范围包括河道和河网建模范围及河道两岸可能淹没区建模范围。
- 1 河道和河网建模范围以研究区域洪水来源河道(或河网)上游具备进行水文预报条件的控制断面或水库坝址为上边界;以研究区域下游具备稳定水位~流量关系的控制断面或水位相对稳定的大水体为下边界。
- 2 河道两岸可能淹没区建模范围以历史最大量级洪水或极端条件溃坝洪水可能淹没范围确定。对于无历史洪水资料地区以超标准洪水可能淹没范围确定。
- 5.2.2 风暴潮洪水建模范围包括风暴潮洪水模拟的陆域范围和风暴潮洪水模拟的海域范围:
 - 1 风暴潮洪水模拟的陆域范围以出现超防潮标准潮位可能淹没范围确定。
- 2 风暴潮洪水模拟的海域范围为陆域岸线至不受径流影响、具备潮位预报条件的外海边界。
- 5.2.3 当研究区域具有一种以上的洪水来源时,建模范围以各类洪水建模范围包络的最大范围确定。

5.3 计算断面和网格剖分

5.3.1 一维河道计算断面设置:

1 一维河道模型的计算断面间距要求如表 5.3.1 所示。河道形态变化不大的顺直河段或 人工河渠,断面间距可适当加大。

表 5.3.1 不同河宽河段的一维模型断面间距要求

河段平均河宽 W	≥1000m	500m≤W<1000m	100m≤W≤500m	<100m
最大断面间距 G	与河宽相当	1000m	500m	100m

- 2 断面形态变化显著河段或重点关注河段应适当加密计算断面,跨河建筑物上下游、河道汇流或分流处、率定验证站点处应设置计算断面。
 - 3 计算断面应采用实测断面或由实测水下地形提取。

5.3.2 二维网格剖分:

- 1 为兼顾模拟精度和计算效率,二维网格宜选择误差可接受范围条件下的最大尺度网格。一般情况下,非建成区网格面积不应大于 0.05km²,建成区网格面积不应大于 0.01km²。
 - 2 外海海域网格剖分尺度选择还应结合地形精度综合考虑。
 - 3 二维网格剖分单元宜采用不规则三角型或四边形,以准确拟合任意复杂边界。
- 4 对洪水演进有影响的高于地面的道路、铁路、堤防等阻水线状地物,以及河渠、低于两侧地面的道路等排水通道,应沿其边界进行网格剖分,并根据其实际高程概化,反映其阻水(或行洪)作用。

- 5 对于城市建成区建筑物较为密集的区域,应选择合适的网格尺寸,以合理概化主要 建筑群阻水效果和街道行洪能力。
- 6 若选择基于区域分解技术的分布式并行计算模式,在网格剖分时,宜考虑负载平衡, 并尽量减少各块之间的数据传递。
- 7 模型计算网格宜兼顾计算精度和效率要求,宜重点针对小时间步长网格进行优化。 5.3.3 一维-二维耦合边界:
- 1 对于侧向耦合边界,当断面间距大于等于网格边长时,每相邻两个一维断面之间应设置耦合边界。当断面间距小于网格边长时,宜根据网格边长设置耦合边界。
 - 2 对于纵向耦合边界, 宜按一维断面宽度设置耦合边界。

5.4 初始及边界条件设置

- 5.4.1 洪水实时模拟模型通常需要接入水文气象实时预报成果作为其边界条件。
- 5.4.2 外边界条件设置:
- 1 河道及河网洪水模拟的上边界条件为预报流量过程,下边界宜为出流控制断面的水位-流量关系或水位相对稳定的大水体的实时预报水位。沿程汇入河道的区间入流宜通过侧向入流边界考虑。
- 2 风暴潮洪水计算的边界条件为模拟范围海域的边界的预报潮位过程及台风预报数据。 5.4.3 内边界条件设置
- 1 研究区域内若存在可能发生堤防(或大坝)溃决的情况,溃口的位置、尺寸、发展过程等参数应可进行实时定义。
- 2 堰坝、涵洞等水工建筑物应根据其实际结构形式和尺寸,通过水力学经验公式概化 其过流能力。
 - 3 水闸、泵站应支持按照调度规则控制、流量/开度过程控制等多种控制模式。
- 5.4.4 在采用预报数据进行洪水实时模拟时,宜采用由实测数据通过模型计算得到的当前时刻水流状态作为模拟的初始场。
- 5.4.5 模型接入的监测数据和预报数据应实时刷新,确保模型计算边界的时效性。

5.5 模型率定验证

- 5.5.1 模型建设期应基于洪水实测和调查资料进行模型参数率定和模型验证。
- 5.5.2 模型建设期率定验证应选择至少3场以上的历史洪水事件,其中不少于2场用于参数率定,不少于1场用于模型验证。
- 5.5.3 一维模型验证精度应符合下列要求:
 - 1 实测与计算最高水位之差小于 30cm。
 - 2 实测与计算最大流量相对误差小于 10%。
 - 3 实测与计算最大 1d、3d 和 7d 洪量相对误差小于 5%。
 - 4 实测与计算洪水过程相位差小于洪水历时 5%, 同时相位差应小于 1h。
- 5.5.4 二维模型验证精度应符合下列要求:
 - 1 调查最大淹没范围与计算最大淹没范围相对误差小于30%。
 - 2 重点关注区域特征点实测或调查水位与计算水位之差不大于 50cm。
- 5.5.5 模型运行期应结合实测洪水资料,定期对模型参数进行更新率定和验证。若模型精度未满足 5.5.3 条和 5.5.4 条要求,应在初始场、内外边界条件等方面误差分析的基础上,综合 多场次实测洪水资料进行参数综合优化调整。

5.6 计算耗时控制

- 5.6.1 洪水实时模拟计算耗时控制要求如下:
 - 1 一维河道及河网洪水实时模拟模型要求在5分钟以内完成24小时洪水演进过程模拟。
- 2 二维或一维-二维耦合洪水实时模拟模型计算耗时控制要求按二维模拟区域面积划 分为以下 3 个等级:
 - 1) 面积≤100km², 要求在 5 分钟以内完成 24 小时洪水演进及淹没过程模拟;
 - 2) 100km²<面积<1000km²,要求在8分钟以内完成24小时洪水演进及淹没过程模拟:
 - 3) 面积≥1000km², 要求在 10 分钟以内完成 24 小时洪水演进及淹没过程模拟。
 - 3 以上计算耗时是指最高洪水频率条件下的洪水模拟时间。
- 5.6.2 当计算效率不满足要求时,可进一步通过网格优化、快速计算方法选择等方面提高模型计算效率,减少计算耗时。

5.7 计算结果分析与展示

- 5.7.1 洪水实时模拟模型输出结果应包含基础要素计算结果及洪水风险要素统计结果。
- 5.7.2 模型输出的基础要素计算结果应包含:
 - 1 一维模型: 各河道计算断面水位、流量、流速变化过程。
 - 2 二维模型:各计算网格水位、水深、流速、流向变化过程。
 - 3 一二维耦合模型: 堤(坝)溃口流量过程、堤防漫溢流量过程。
- 4 模型中考虑的各种水工建筑物(堰坝、涵洞、闸门、泵站等)调度过程和水位流量过程。
- 5.7.3 模型输出的洪水风险要素统计结果应包含:研究区域最大淹没范围,各网格最大淹没水深、洪水到达时间、最大淹没水深到达时间、淹没历时、最大单宽流量等结果。在进行上述指标统计时,宜在模型计算过程中逐计算步进行统计,避免基于输出结果统计方法可能存在的采样误差。
- 5.7.4 应对模型计算结果进行合理性检查,若出现不合理处,应查明原因并做相应调整。合理性检查可以下几个方面开展:
 - 1 检查模型的水量平衡。
 - 2 检查模型计算是否稳定。
 - 3 检查河道水面线是否合理。
 - 4 检查溃口流量过程是否合理。
 - 5 检查总体流场分布是否合理。
 - 6 检查各类特征地物(阻水地物、行洪通道、水工建筑物等)处的局部流场特征。
 - 7 检查洪水淹没范围、洪水到达时间分布是否合理。
- 5.7.5 基于模型输出结果,结合洪水实时分析业务需求,计算结果展示宜包括以下内容:
 - 1 重要断面的水位/流量过程, 洪峰、洪量、峰现时间、最高水位等统计结果。
 - 2 重要区域的淹没面积、最大淹没水深等。
 - 3 发生溃漫堤的河道位置、长度、溃口流量过程等。
- 4 河道洪峰演进、河道水面线变化、重要断面水位变化、二维洪水演进等重要过程动画展示。
 - 5 对于具有实测验证数据的历史方案,应提供模型精度统计结果展示。
 - 6 上述展示要素应涵盖从洪水起涨至结果展示时刻模型预见期范围内的完整洪水过程。

5.8 洪水实时模拟应用模式

5.8.1 洪水实时模拟应通过接入实时监测数据和预报数据,转换为模型计算所需的初始场和 边界条件,进行模型滚动计算,实时更新计算结果。具体应用模式如图 5.8.1 所示。

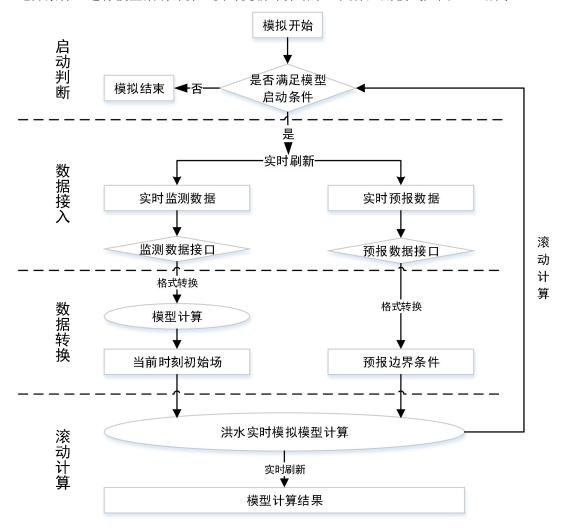
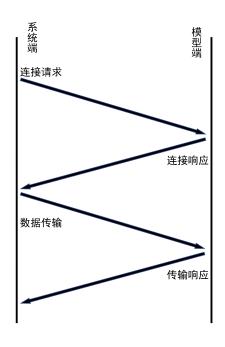


图 5.8.1 洪水实时模拟应用模式

- 5.8.2 模型接入的监测数据和预报数据应实时刷新,确保模型计算边界的时效性。
- 5.8.3 在采用预报数据进行洪水实时模拟时,宜采用由实测数据通过模型计算得到的当前时刻水流状态作为模拟的初始场。同时,模型应支持用户自定义初始场的启动模式。
- 5.8.4 宜根据重要控制断面的水位流量或代表站点实测累计雨量启动、加密或终止模型滚动计算,模型滚动计算频次应根据模型预报期长度、水文气象实测及预报数据更新频次、模型计算耗时等因素综合确定。
- 5.8.5 洪水实时模拟模型预见期应根据水文气象预报预见期、防汛指挥决策业务需求等综合确定。


6 洪水实时模拟模型接口

6.1 基本要求

- 6.1.1 洪水实时模拟模型接口指洪水预报预警等业务应用系统(下称系统端)与洪水实时模拟模型(下称模型端)间进行数据交互的接口方式。
- 6.1.2 洪水实时模拟模型接口包括气象水文数据接口、河网结构数据接口、网格地形数据接口、模型参数接口、模拟结果数据接口等。
- 6.1.3 洪水实时模拟模型接口的技术要求包括:数据格式、数据交互流程等方面的内容。
- 6.1.4 数据需统一高程基面及平面投影坐标系。无特殊说明时,水位单位为 m,流量单位为 m^3/s ,长度单位为 m,面积单位为 km^2 ,降雨强度为 mm/h,时刻单位为 h,时间步长单位为 s。
- 6.1.5 洪水实时模拟模型数据可分为静态数据与动态数据。其中,静态数据主要为模型配置数据,主要包含:河网结构、网格地形、参数数据。静态数据只有当模型要更新时,才需要调用接口进行模型的配置更新。动态数据主要为基于时序的模型输入输出数据,主要包含:水文气象数据,一维、二维模型成果数据。
- 6.1.6 本章定义了洪水实时模拟中模型进行数据交互中必要的基本接口,当洪水实时模拟中需要考虑水库、水闸、泵站、蓄滞洪区等防洪工程调度时,可在此基础上根据实际调度情景进行水利工程调度数据接口的设计与研发。
- 6.1.7 接口的组织及实现形式可以是文本读写、函数调用、WebService 等形式,根据模型及系统研发需求而定。当系统端与模型端为网间远程交互时,建议采用 WebService 形式进行接口实现。

6.2 数据交互流程

6.2.1 本规程基于服务的形式定义数据接口的使用方法,构建以下系统端与模型端的接口交互协议。主要分为连接测试与数据传输两个阶段。数据接口及服务响应流程如图 6.2.1 所示。

图 6.2.1 洪水实时模拟系统数据接口及服务响应流程

- 6.2.2 本规程中洪水实时模拟模型的数据交互流程主要包括输入数据交互与输出数据交互。模型端与系统端进行交互的数据类型包括:空间数据与关系数据。输入数据包含:河网结构数据、网格地形数据、气象水文数据、模型参数数据。输出数据为模拟成果数据。其中河网结构数据、网格地形数据为空间数据,其余为关系数据。模型端与系统端数据交互流程见图6.2.2-1 模型数据整体流程见图6.2.2-2。
- 1 空间数据交互形式: 当模型端与系统端为本地交互时,可基于 SHP 文件、GeoJSON 文本、KML 文本等常见空间数据格式中的一种或多种进行交互; 当模型端与系统端为远程 交互时,可基于 GeoJSON 文本、KML 文本等常见格式中的一种或多种进行交互。
- 2 关系数据交互形式: 当模型端与系统端为本地交互时, 可基于多类型多维数组、JSON 文本、XML 文本等常见据格式中的一种或多种进行交互; 当模型端与系统端为远程交互时, 可基于 JSON 文本、XML 文本等常见据格式中的一种或多种进行交互。

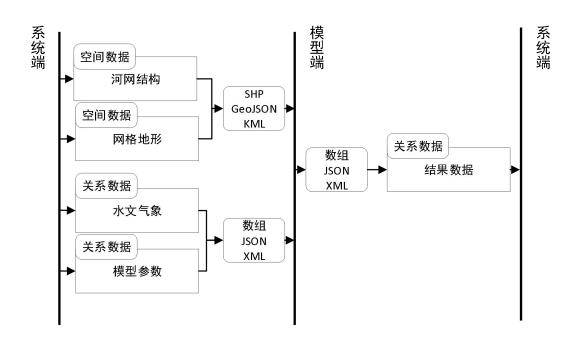


图 6.2.2-1 模型端与系统端数据交互流程

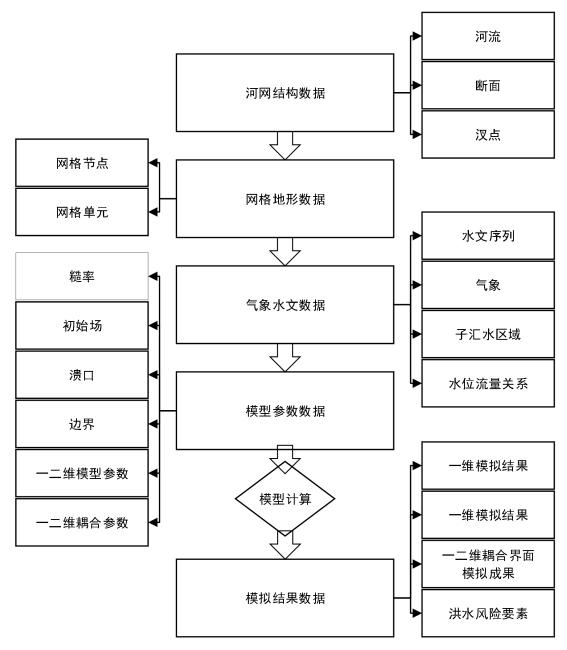


图 6.2.2-2 洪水实时模拟模型数据流程

6.3 数据类型定义

- 6.3.1 本规程中使用的数据类型共有字符串、数值、时间和3种。
- 6.3.2 字符串数据类型主要用来描述非数值型的数据,它所描述的数据不能进行一般意义上的数学计算,只有描述意义,如测站编码、名称以及注释性的描述等。
 - 1 字符串数据类型的描述格式: C(d)。
 - 2 说明:
 - C——为类型标识,固定用来描述字符串类型;
 - ()——为括号,固定不变;
 - d——为十进制数,用来描述字段最大可能的字符串长度。
 - 3 本接口中所有中文字符串的汉字编码标准采用 GB2312-80。
- 6.3.3 数值数据类型用于描述两种数据,一种是带小数的浮点数,另一种是整数。

- 1 数值数据类型的描述格式: N(D[,d])
- 2 说明:
 - N——类型标识,固定用来描述数值类型;
- ()——括号,固定不变;
- []——表示小数位描述可选;
 - D——描述数值型数据的总位数(不包括小数点);
 - d——描述数值型数据的小数位数:
 - , ——固定符号, 用来分隔总位数及小数位数。
- 6.3.4 时间数据类型用于表示一个时刻。时间数据类型采用公元纪年的北京时间,精度计至分钟。
 - 1 时间数据类型的描述格式为 T。
 - 2 时段数据类型的描述格式为 DR。

6.4 水文气象数据接口

- 6.4.1 水文气象数据包括水文时间序列、水位-流量关系、台风风场、降雨时间序列数据等。 主要为基于时序的动态输入数据。
- 6.4.2 水文时间序列接口内容如表 6.4.1 所示:

表 6.4.1 水文时间序列接口内容说明

字段名称	字段类型	备注
STCD	C (8) 站点编码	
DT	N (8)	数据类型
TM	Т	年/月/日 时:分:秒
Z	N (9, 3)	水位/潮位
Q	N (9, 3)	流量

6.4.3 水位-流量关系数据接口内容如表 6.4.2 所示:

表 6.4.2 水位-流量关系数据接口内容说明

字段名称	字段类型	备注
STCD	C (8)	站点编码
Z	N (9,3)	水位
Q	N (9,3)	流量

表 6.4.1 与表 6.4.2 中站点信息数据接口内容如表 6.4.3 所示:

表 6.4.3 站点数据接口内容说明

字段名称	字段类型	备注
STCD	C (8) 站点编码	
STNM	C (30)	站点名称
LGTD	C (16)	站点位置经度(度分秒)
LTTD	C (16)	站点位置纬度(度分秒)

6.4.4 台风风场数据接口内容如表 6.4.4 所示:

表 6.4.4 台风风场接口内容说明

字段名称	字段类型	备注
TPCD	C (8) 台风编码	
TPNM	C (12)	台风名称
TM	T	年/月/日 时:分:秒

字段名称	字段类型	备注
LGTD	C(16) 台风中心经度(度分秒)	
LTTD	C (16)	台风中心纬度 (度分秒)
V	N (5, 2)	移行风风速
P0	N (8)	台风中心气压

6.4.5 降雨时间序列数据接口内容如表 6.4.5 所示,降雨站点信息接口内容如表 6.4.6 所示: 表 6.4.5 降雨时间序列接口内容说明

字段名称	字段类型	备注
STCD	C (8) 站点编码	
TM	Т	年/月/日 时:分:秒
DRP DR		时段降水量
INTV	N (8)	时段长

表 6.4.6 降雨站点接口内容说明

字段名称	字段类型	备注
STCD	C (8)	站点编码
STNM	C (12)	站点名称
LGTD	C (16)	站点位置经度(度分秒)
LTTD	C (16)	站点位置纬度 (度分秒)

6.5 河网结构数据接口

- 6.5.1 河网结构数据文件包括河流文件、断面文件、断面高程点文件、汊点文件、边界文件等。河网结构数据为模型的静态配置数据。
- 6.5.2 河流文件存储每条河流的数据,其属性表包含自然河道名称、自然河道流向。河流文件的属性字段定义如表 6.5.2 所示:

表 6.5.2 河流文件接口内容说明

字段名称	字段含义	字段类型	备注
RVNM	自然河道名称	C (30)	-
RVCD	自然河道编号	C (8)	-
DF	自然河道流向	N (4)	-

6.5.3 断面是进行河道概化的重要元素。断面文件属性包含所属自然河道名称、断面位置信息。各属性字段定义如表 6.5.3 所示:

表 6.5.3 断面文件接口内容说明

字段名称	字段含义	字段类型	备注
CSCD	断面编号	C (8)	-
RVNM	所属自然河道名称	C (30)	-
LPX	断面起点 x 坐标	N (12, 4)	投影坐标
LPY	断面起点y坐标	N (12, 4)	投影坐标
RPX	断面终点 x 坐标	N (12, 4)	投影坐标
RPY	断面终点y坐标	N (12, 4)	投影坐标
LBTX	左堤顶 x 坐标	N (12, 4)	投影坐标
LBTY	左堤顶 y 坐标	N (12, 4)	投影坐标
RBTX	右堤顶 x 坐标	N (12, 4)	投影坐标
RBTY	右堤顶 y 坐标	N (12, 4)	投影坐标

6.5.4 断面高程点文件属性仅记录位置及高程信息,属性字段定义如表 6.5.4 所示:

表 6.5.4 断面高程点文件接口内容说明

字段名称	字段含义	字段类型	备注
CSPCD	断面高程点编码	C (8)	-
PX	断面高程点 x 坐标	N (12, 4)	投影坐标
PY	断面高程点 y 坐标	N (12, 4)	投影坐标
PZ	断面高程点地形高程	N (12, 4)	-
CSCD	地形点所属断面编号	C (8)	-

6.5.5 汊点文件属性包含汊点位置、汊点处连接的自然河道名称、汊点处连接的自然河道数量,属性字段定义如表 6.5.5 所示:

表 6.5.5 汊点文件接口内容说明

字段名称	字段含义	字段类型	备注
JCD	汊点编码	C (8)	-
RVNM	连接的自然河道名称	C (30)	-
PX	汊点位置 x 坐标	N (12, 4)	投影坐标
PY	汊点位置 y 坐标	N (12, 4)	投影坐标
RVNB	连接的自然河道数量	N (8)	-

6.5.6 边界文件属性包含边界点的位置、边界类型、边界名称,属性字段定义如表 6.5.6 所示:

表 6.5.6 边界文件接口内容说明

字段名称	字段含义	字段类型	备注
BCCD	边界编码	C (8)	-
BCNM	边界名称	C (30)	-
BCX	边界位置 x 坐标	N (12, 4)	投影坐标
BCY	边界位置 y 坐标	N (12, 4)	投影坐标
ВСТР	边界类型	N (8)	-

6.6 网格地形数据接口

- 6.6.1 网格地形数据文件包括节点文件、单元文件。网格地形数据为模型的静态配置数据。
- 6.6.2 节点文件记录网格节点位置及高程,属性字段定义表 6.6.2 所示:

表 6.6.2 节点文件接口内容说明

字段名称	字段含义	字段类型	备注
NDCD	节点序号	N (8)	-
X	节点 x 坐标	N (12, 4)	投影坐标
Y	节点 y 坐标	N (12, 4)	投影坐标
NDB	节点地形高程	N (12, 4)	-

6.6.3 单元文件记录网格拓扑关系,属性字段定义如表 6.6.3 所示:

表 6.6.3 单元文件接口内容说明

字段名称	字段含义	字段类型	备注
GCCD	单元序号	N (8)	-
TP	单元类型	N (8)	-
N1	顶点序号	N (8)	-
N2	顶点序号	N (8)	-

字段名称	字段含义	字段类型	备注
N3	顶点序号	N (8)	-
N4	顶点序号	N (8)	-

6.7 模型参数接口

- 6.7.1 模型参数接口包括河网实时边界、河网糙率、一维初始场、河网模型计算参数、二维 网格边界、网格糙率、二维数学模型计算参数、二维初始场、一维-二维纵向耦合参数、一维-二维侧向耦合参数、溃口参数、一维-二维耦合模型计算参数等。参数配置数据为模型的 静态配置数据。
- 6.7.2 河网实时边界数据接口内容如表 6.7.2 所示:

表 6.7.2 河网实时边界数据接口内容说明

变量名	类型名	备注
BCCD	N (8)	边界编号
BCNM	C (30)	边界名称
BCX	N (12, 4)	边界位置X坐标
BCY	N (12, 4)	边界位置Y坐标
DT	N (8)	数据类型
TM	T	年/月/日 时:分:秒
DATA	N (12, 4)	水位或流量

6.7.3 河网糙率数据接口内容如表 6.7.3 所示:

表 6.7.3 河网糙率数据接口内容说明

变量名	类型名	备注
CSCD	N (8)	断面编号
MANNING	N (9, 3)	曼宁糙率系数

6.7.4 一维初始场参数接口内容如表 6.7.4 所示:

表 6.7.4 一维初始场参数接口内容说明

变量名	类型名	备注
CSCD	N (8)	断面编号
Z	N (9, 3)	断面水位
Q	N (9, 3)	断面流量

6.7.5 河网模型计算参数接口内容如表 6.7.5 所示:

表 6.7.5 河网模型计算参数接口内容说明

变量名	类型名	备注
GAMA	N (9, 3)	差分系数
DT	N (9, 3)	计算时间步长
TS	N (9, 3)	计算起始时刻
TF	N (9, 3)	计算终止时刻
DTOUT	N (9, 3)	结果输出时间步长
FHW_ON	C (1)	窄缝法使用选项
DEADAREA	N (9, 3)	窄缝总面积
WSMIN	N (9, 3)	窄缝宽度
RWMIN	N (9, 3)	最小水力半径

变量名	类型名	备注
CFL1D	N (9, 3)	CFL 数

6.7.6 二维网格边界数据接口内容如表 6.7.6 所示:

表 6.7.6 二维网格边界数据接口内容说明

变量名	类型名	备注
BCCD	N (8)	边界编号
BCNM	C (30)	边界名称
BCNDCD1	N (8)	边界起始节点编号
BCNDCD2	N (8)	边界终止节点编号
DT	N (8)	数据类型
TM	T	年/月/日 时:分:秒
Z	N (9, 3)	水位
Q	N (9, 3)	流量

6.7.7 网格糙率数据接口内容如表 6.7.7 所示:

表 6.7.7 网格糙率数据接口内容说明

变量名	类型名	备注
GCCD	N (8)	网格序号
MANNING	N (9, 3)	曼宁糙率系数

6.7.8 二维数学模型计算参数接口内容如表 6.7.8 所示:

表 6.7.8 二维数学模型计算参数接口内容说明

变量名	类型名	备注
ORDER	N (8)	计算格式精度
UFTS	C (1)	计算时间步长模式
MLTSL	N (8)	局部时间步长层数
DT	N (9, 3)	固定计算时间步长
CFL	N (9, 3)	CFL 数
TS	N (9, 3)	计算初始时刻
TF	N (9, 3)	计算终止时刻
AODT	N (9, 3)	结果输出时间步长
TOL	N (9, 3)	干湿边界水深阈值
AK	N (9, 3)	紊动粘性系数

6.7.9 二维初始场数据接口内容如表 6.7.9 所示:

表 6.7.9 二维初始场数据接口内容说明

变量名	类型名	备注
GCCD	N (8)	网格序号
Н	N (9, 3)	水深
U	N (9, 3)	x 方向流速
V	N (9, 3)	y 方向流速

6.7.10 一维-二维纵向耦合参数接口内容如表 6.7.10 所示:

表 6.7.10 一维-二维纵向耦合参数接口内容说明

变量名	类型名	备注
CBCD	N (8)	纵向耦合界面编号

变量名	类型名	备注
CBNM	C (30)	耦合界面名称
ITEMAX	N (8)	最大迭代计算次数
CSCD	N (8)	一维断面编号
BCCD	N (8)	二维水位边界编号
RATEQ	N (9, 3)	流量误差控制
MINQ	N (9, 3)	流量误差控制
MAXQ	N (9, 3)	流量误差控制

6.7.11 一维-二维侧向耦合参数接口内容如表 6.7.11 所示:

表 6.7.11 一维-二维侧向耦合参数接口内容说明

变量名	类型名	备注
CBCD	N (8)	耦合界面编号
CBNM	C (30)	耦合界面名称
MAXRATE	N (9, 3)	分洪流量最大分流比
CSCD1	N (8)	上游断面编号
CSCD2	N (8)	下游断面编号
BCCD	N (8)	二维水位边界编号

6.7.12 溃口参数接口内容如表 6.7.12 所示:

表 6.7.12 溃口参数接口内容说明

变量名	类型名	备注
BCD	N (8)	溃口编号
BNM	C (30)	溃口名称
TM	T	年/月/日 时:分:秒
NDCD	N (8)	溃口处网格节点编号
NDB	N (9, 3)	溃口处网格节点高程
LCOE	N (9, 3)	有效网格长度系数
WL	N (9, 3)	溃决水位

6.7.13 一维-二维耦合模型计算参数接口内容如表 6.7.13 所示:

表 6.7.13 一维-二维耦合模型计算参数接口内容说明

变量名	类型名	备注
1D_2D_DT	N (9, 3)	一维-二维同步时间间隔

6.8 模拟结果数据接口

- 6.8.1 模型结果数据接口包括一维模拟结果、二维模拟结果、一维-二维纵向耦合界面计算结果、一维-二维纵向耦合界面计算结果。结果的输出时间间隔在模型参数中进行配置,建议时间间隔为1小时。
- 6.8.2 一维模拟结果数据接口内容如表 6.8.1 所示:

表 6.8.1 一维模拟结果数据接口内容说明

变量名	类型名	备注
TM	Т	年/月/日 时:分:秒
CSCD	N (8)	断面编号
Q	N (9, 3)	流量
Z	N (9, 3)	水位

U N(9, 3) 流速

6.8.3 二维模拟结果数据接口内容如表 6.8.2 所示:

表 6.8.2 二维模拟结果数据接口内容说明

变量名	类型名	备注
TM	Т	年/月/日 时:分:秒
GCCD	N (8)	网格 ID
Н	N (9, 3)	水深
Z	N (9, 3)	水位
U	N (9, 3)	x 方向流速
V	N (9, 3)	y方向流速

6.8.4 洪水风险要素数据接口内容如表 6.8.3 所示:

表 6.8.3 洪水风险要素数据接口内容说明

变量名	类型名	备注
GCCD	N (8)	网格编号
MAXH	N (9, 3)	最大淹没水深
MAXZ	N (9, 3)	最大淹没水位
MAXV	N (9, 3)	最大洪水流速
MAXHV	N (9, 3)	最大单宽流量
AT	N (9, 3)	洪水到达时间
MAXHT	N (9, 3)	最大淹没水深到达时间

6.8.5 一维-二维纵向耦合界面计算结果接口内容如表 6.8.4 所示:

表 6.8.4 一维-二维纵向耦合界面计算结果接口内容说明

变量名	类型名	备注
CBCD	N (8)	耦合界面编号
CBNM	C (30)	耦合界面名称
TM	T	年/月/日 时:分:秒
Z	N (9, 3)	耦合界面水位
Q	N (9, 3)	耦合界面流量

6.8.6 一维-二维侧向耦合界面计算结果接口内容如表 6.8.5 所示:

表 6.8.5 一维-二维侧向耦合界面计算结果接口内容说明

变量名	类型名	备注	
CBCD	N (8)	耦合界面编码	
CBNM	C (30)	耦合界面名称	
TM	Т	年/月/日 时:分:秒	
Z1	N (9, 3)	耦合界面上游断面水位	
Z2 N (9, 3)		耦合界面下游断面水位	
Q1	Q1 N (9, 3)		
Q2 N (9, 3)		耦合界面下游断面流量	
Q	N (9, 3)	耦合界面流量	

6.9 模型运行管理数据接口

6.9.1 模型运行管理数据接口主要涵盖了模型计算方案状态管理方面的内容。接口内容如表 6.9.1 所示:

表 6.9.1 模型运行管理数据接口内容说明

变量名	类型名	备注
PJCD	N (8)	模拟方案编号
PJNM	C (30)	模拟方案名称
PJST	C (10)	模拟方案状态
PJDC	C (1000)	模拟方案说明
SSTM	Т	模拟起始时刻时间
TH	N (9.3)	模拟总时长 (小时)
CTM	Т	方案创建时间 年/月/日 时:分:秒
PJPT	N (4, 3)	方案计算进度

附录 A 一维水动力模型

A.0.1 一维水动力模型采用圣维南方程组作为河道非恒定流控制方程,包括水流连续方程和水流运动方程。水流连续方程应按公式(A.0.1-1)计算,水流运动方程应按公式(A.0.1-2)计算:

$$\frac{\partial Z}{\partial t} + \frac{1}{B} \frac{\partial Q}{\partial x} = \frac{q}{B} \tag{A.0.1-1}$$

$$\frac{\partial Q}{\partial t} + gA \frac{\partial Z}{\partial x} + \frac{\partial}{\partial x} (\beta uQ) + g \frac{|Q|Q}{c^2 AR} = 0$$
(A.0.1-2)

式中 x——为里程 (m);

t——为时间(s);

Z——为水位 (m);

B——为过水断面水面宽度(m);

O——为流量 (m³/s);

q——为侧向单宽流量 (m^2/s) , 正值表示流入, 负值表示流出;

A——为过水断面面积 (m^2) ;

g——为重力加速度 (m/s^2); u 为断面平均流速;

β——为校正系数;

R——为水力半径;

c——为谢才系数, $c=R^{1/6}/n$,n 为曼宁糙率系数。

A.0.2 当模拟对象为河网时,还需采用汊点连接方程,包括流量衔接条件和动力衔接条件。流量衔接条件应按公式(A.0.2-1)计算,动力衔接条件应按公式(A.0.2-2)计算:

$$\sum_{i=1}^{m} Q_i = 0 \tag{A.0.2-1}$$

$$Z_1 = Z_2 = = Z_m \tag{A.0.2-2}$$

式中: Q_i 一为汊点第 i 条支流流量,流入为正,流出为负;

 Z_i ——表示汊点第i条支流的断面平均水位;

m——为汊点处的支流数量。

附录 B 二维水动力模型

B.0.1 二维水动力模型采用守恒形式的二维浅水方程应按公式(B.0.1-1)计算:

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{E}^{\text{adv}}}{\partial x} + \frac{\partial \mathbf{G}^{\text{adv}}}{\partial y} = \frac{\partial \mathbf{E}^{\text{diff}}}{\partial x} + \frac{\partial \mathbf{G}^{\text{diff}}}{\partial y} + \mathbf{S}$$
(B.0.1-1)

式中: U——为守恒向量;

 E^{adv} , G^{adv} ——分别为 x、y 方向的对流通量向量;

 E^{diff} , G^{diff} ——分别为 x、y 方向的扩散通量向量;

S——为源项向量。

$$\mathbf{U} = \begin{bmatrix} h \\ hu \\ hv \end{bmatrix} \qquad \mathbf{S} = \begin{bmatrix} 0 \\ g(h+b)S_{0x} \\ g(h+b)S_{0y} \end{bmatrix} + \begin{bmatrix} 0 \\ -ghS_{fx} \\ -ghS_{fy} \end{bmatrix}$$
(B.0.1-2)

$$\mathbf{E}^{\text{adv}} = \begin{bmatrix} hu \\ hu^2 + \frac{1}{2}g(h^2 - b^2) \\ huv \end{bmatrix} \qquad \mathbf{G}^{\text{adv}} = \begin{bmatrix} hv \\ huv \\ hv^2 + \frac{1}{2}g(h^2 - b^2) \end{bmatrix}$$

$$\mathbf{E}^{\text{diff}} = \begin{bmatrix} 0 \\ 2hv_{t}\frac{\partial u}{\partial x} \\ hv_{t}(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}) \end{bmatrix} \qquad \mathbf{G}^{\text{diff}} = \begin{bmatrix} 0 \\ hv_{t}(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}) \\ 2hv_{t}\frac{\partial v}{\partial y} \end{bmatrix}$$

$$(B.0.1-4)$$

式中: h——为水深;

u, v——分别为垂直方向平均流速在x、y 方向的分量;

b——为底高程;

 v_t ——为水平方向的紊动粘性系数;

g——为重力加速度;

 S_{fx} , S_{fy} ——分别为x、y 方向的摩阻斜率;

 S_{0x} , S_{0y} ——分别为x、y 方向的底坡斜率:

$$S_{0x} = -\frac{\partial b(x, y)}{\partial x} \qquad S_{0y} = -\frac{\partial b(x, y)}{\partial y}$$
 (B.0.1-5)

采用 Manning 公式计算摩阻斜率:

$$S_{fx} = \frac{n^2 u \sqrt{u^2 + v^2}}{h^{4/3}} \qquad S_{fy} = \frac{n^2 v \sqrt{u^2 + v^2}}{h^{4/3}}$$
 (B.0.1-6)

式中: n——为 Manning 系数,与地形地貌、地表粗糙程度、植被覆盖等下垫面情况有关,一般结合经验给定 Manning 系数值。 采用如下代数关系计算紊动粘性系数:

$$v_t = \alpha \kappa u_* h \tag{B.0.1-7}$$

式中: α —为比例系数,一般取 0.2;

κ——为卡门系数, 取 0.4;

u*——为床面剪切流速。

附录 C 风-浪-流多场耦合二维水动力模型

C.0.1 采用改进形式的二维浅水方程作为控制方程,并考虑海面气压场、台风场、波浪场的作用:

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{E}^{\text{adv}}}{\partial x} + \frac{\partial \mathbf{G}^{\text{adv}}}{\partial y} = \frac{\partial \mathbf{E}^{\text{diff}}}{\partial x} + \frac{\partial \mathbf{G}^{\text{diff}}}{\partial y} + \mathbf{S}$$
(C.0.1-1)

式中:

$$\mathbf{U} = [h, hu, hv]^{T}$$

$$\mathbf{E}^{\text{adv}} = [hu, hu^{2} + 0.5g(h^{2} - b^{2}), huv]^{T}$$

$$\mathbf{G}^{\text{adv}} = [hv, huv, hv^{2} + 0.5g(h^{2} - b^{2})]^{T}$$

$$\mathbf{E}^{\text{diff}} = [0, 2hv_{t} \frac{\partial u}{\partial x}, hv_{t} (\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x})]^{T}$$

$$G^{\text{diff}} = [0, hv_{t} (\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}), 2hv_{t} \frac{\partial v}{\partial y}]^{T}$$

$$S = S_0 + S_f = \begin{bmatrix} 0 \\ g(h+b)S_{0x} - ghS_{fx} + fhv + \tau_x^s + gh\frac{\partial p}{\partial x} - (\frac{\partial S_{xx}}{\partial x} + \frac{\partial S_{xy}}{\partial y}) \\ g(h+b)S_{0y} - ghS_{fy} - fhu + \tau_y^s + gh\frac{\partial p}{\partial y} - (\frac{\partial S_{yx}}{\partial x} + \frac{\partial S_{yy}}{\partial y}) \end{bmatrix}$$
(C.0.1-2)

式中: *U*——为守恒向量;

 E^{adv} , G^{adv} ——分别为 x 和 v 方向的对流通量向量;

 E^{diff} , G^{diff} ——分别为x和y方向的扩散通量向量;

S——为源项:

 S_{0x} , S_{0y} ——分别为x和y方向的底坡, 其表达式分别为 $S_{0x}=-\partial b/\partial x$ 和 $S_{0y}=-\partial b/\partial y$;

 S_{fx} , S_{fy} ——分别为x 和y 方向的摩阻坡降,不考虑波流相互作用时,其表达式分别为 $S_{fx}=n^2u(u^2+v^2)I/2h^{-4/3}$ 和 $S_{fy}=n^2v(u^2+v^2)^{1/2}h^{-4/3}$;

h——为水深;

u, v——分别为x和y方向的垂线平均流速;

b——为河底高程;

n——为糙率;

t——为时间;

g——为重力加速度;

 v_t ——为水平方向的紊动粘性系数, v_t = $\alpha \kappa u * h$;

 α ——为比例系数, α =0.2;

 κ ——为卡门系数, κ =0.4;

u*——为床面剪切流速;

f——为柯氏力系数,f= $2wsin\varphi$;

w——为地球自转角速度, w=7.29×10⁻⁵rad/s;

 φ ——为当地纬度;

 τ^s ——为水面风应力, $\tau^s = \rho_a/\rho_w C_d |u_{10}| u_{10}$;

p——为由于台风气压变化引起的海面静压升高;

 ρ_a , ρ_w ——分别为空气和水体的密度;

 C_d —一为风应力系数;

 u_{10} ——为水面 10m 高处的风速;

 S_{xx} , S_{xy} ——为x方向波浪辐射应力;

 S_{vx} , S_{vv} —一为y方向波浪辐射应力。

C.0.2 前述控制方程中考虑了大气压力、风应力、波浪辐射应力等动力因子,反映了海面气压场、台风场、波浪场对潮流的驱动作用。在潮流模型的基础上增加气压项和风应力项,把天文潮与风暴潮二种长波合在一起,控制方程中保留非线性项,即为天文潮和风暴潮的耦合模型。

C.0.3 水面风应力拖曳系数 C_d 可取常数值(如 2.6×10⁻³)。此外,考虑到阻尼系数随着风速的加大而有一定增大的观测事实,常将表面风应力拖曳系数参数化成如下的线性形式:

$$C_d = 0.001 \times (a + b\sqrt{U_w^2 + V_w^2})$$
 (C.0.3)

式中: a, b 为经验系数,取值见表 C.0.3。需要注意的是,由于观测的资料源不同,得到 a、b 值分散性很大,适用范围也不完全相同,绝大多数公式目前还只适用于 25 m/s 以下的风速范围。

从 C.V.S					
а	b	风速范围	来源	备注	
1.300	0.000	[5.5, 7.9]	Rossby 和 Montgomery, 1935	-	
2.6	0.000	[5.5, 7.9]	Sverdrup, 1942	-	
1.00	0.070	[1.5, 13]	Deacon 和 Webb, 1962	-	
0.800	0.065	[7.5, 50]	Wu, 1982	-	
0.610	0.063	[5, 22]	Smith, 1980	推荐用于风暴潮数值模拟	
0.750	0.067	[4, 21]	Garratt, 1977	-	
0.577	0.085	[5, 25]	Geernaert, 1987	-	
0.490	0.065	[11, 25]	LargeandPond, 1981	推荐用于浅水湖泊的风生流计算	
0.50	0.071	[6, 26]	Yelland 和 Taylor,1998	-	

表 C.0.3 水面风应力拖曳系数计算公式的经验系数值

C.0.4 采用下式计算波浪辐射应力:

$$\boldsymbol{F}_{S} = \begin{bmatrix} S_{xx} & S_{xy} \\ S_{yx} & S_{yy} \end{bmatrix} = \frac{E}{\rho_{w}} \begin{bmatrix} \gamma(\cos^{2}\alpha + 1) - \frac{1}{2} & \frac{\gamma}{2}\sin(2\alpha) \\ \frac{\gamma}{2}\sin(2\alpha) & \gamma(\sin^{2}\alpha + 1) - \frac{1}{2} \end{bmatrix}$$
(C.0.4)

式中: α ——为波浪传播方向与 x 轴的夹角;

E——为单位水柱体一个波周期的平均波能, $E=\rho_w g h^2/8$;

 γ ——为波群速度与相速度之比, γ =0.5[1+2kh/sinh(2kh)],k 为波数。

C.0.5 采用两维波作用密度谱平衡方程作为波浪运动控制方程:

$$\frac{\partial}{\partial t}N + \frac{\partial}{\partial x}C_xN + \frac{\partial}{\partial v}C_yN + \frac{\partial}{\partial \sigma}C_\sigma N + \frac{\partial}{\partial \theta}C_\theta N = \frac{S(\sigma, \theta)}{\sigma}$$
 (C.0.5-1)

式中: N——为波作用密度谱,N=N (σ , θ , x, y, t) =E (σ , θ , x, y, t) / σ , E (σ , θ , x, y, t) 为能谱密度;

 σ ——为波浪的相对频率(在随水流运动的坐标系中观测到的频率);

 θ ——为波向(各谱分量中垂直于波峰线的方向);

 C_x , C_v ——为波浪传播速度的 x 和 y 向分量;

 C_{σ} , C_{θ} —为 σ 和 θ 空间的波浪传播速度;

S——以谱密度表示的波浪生成、耗散及波波相互作用的源项,包括风能输入、波与波之间的非线性相互作用和由于底摩擦、白浪、水深变浅引起的波浪破碎等导致的能量耗散。

波浪传播速度均采用线性波理论进行计算:

$$C_x = \frac{dx}{dt} = \frac{1}{2} \left[1 + \frac{2kd}{\sinh(2kd)} \right] \frac{\sigma k_x}{k^2} + U_x$$
 (C.0.5-2)

$$C_y = \frac{dy}{dt} = \frac{1}{2} \left[1 + \frac{2kd}{\sinh(2kd)} \right] \frac{\sigma k_y}{k^2} + U_y$$
 (C.0.5-3)

$$C_{\sigma} = \frac{d\sigma}{dt} = \frac{\partial\sigma}{\partial d} \left[\frac{\partial d}{\partial t} + U \cdot \nabla d \right] - C_{g}k \frac{\partial U}{\partial s}$$
 (C.0.5-4)

$$C_{\theta} = \frac{d\theta}{dt} = \frac{1}{k} \left[\frac{\partial \sigma}{\partial d} \frac{\partial d}{\partial m} + k \cdot \frac{\partial U}{\partial m} \right]$$
 (C.0.5-5)

式中: \vec{k} ——为波数 $k = (k_x, k_y)$;

d——为水深;

 \overline{U} ——为流速 $U = (U_x, U_y)$;

S——为沿 θ 方向的空间坐标;

$$M$$
——为垂直于 S 的坐标; 算子 $\partial/\partial t$ 定义为: $\frac{d}{dt} = \frac{\partial}{\partial t} + C \cdot \nabla_{x,y}$.

波浪模型的右端源项可表示为:

$$S = S_{in} + S_{dsw} + S_{dsb} + S_{dsbr} + S_{nl4} + S_{nl3}$$
 (C.0.5-6)

式中: S_{in} ——为风能输入;

 S_{dsw} ——为白浪耗散;

 S_{dsb} ——为底摩擦耗散;

 S_{dsbr} —一为破碎耗散;

 S_{nl4} ——为四组分波相互作用;

Snl3——为三组分波相互作用。

C.0.6 台风理论气压场模型中常用的 5 种气压公式分别为:

1 V.Bjerknes 模型:

$$p(r) = p_{\infty} - \frac{\Delta p}{1 + (\frac{r}{R_0})^2}$$
 (C.0.6-1)

2 高桥模型:

$$p(r) = p_{\infty} - \frac{\Delta p}{1 + \frac{r}{R_0}}$$
 (C.0.6-2)

3 藤田模型:

$$p(r) = p_{\infty} - \frac{\Delta p}{\sqrt{1 + (\frac{r}{R_0})^2}}$$
(C.0.6-3)

4 Myers 模型:

$$p(r) = p_0 - (1 - e^{-\frac{R_0}{r}})\Delta p$$
 (C.0.6-4)

5 Jelesnianski 模型:

$$p(r) = p_0 - \frac{1}{4} \Delta p \left(\frac{r}{R_0}\right)^3 \qquad r \le R_0$$

$$p(r) = p_\infty - \frac{3}{4} \frac{\Delta p}{\frac{r}{R_0}} \qquad r > R_0$$
(C.0.6-5)

式中: r——为计算点至台风中心的距离;

p(r)——为距台风中心r距离处的气压;

 P_0 ——为台风的中心气压;

 P_{∞} ——为台风的外围气压,为一常数,一般取为 1013.3hpa;

 Δp ——为最大风速半径, $\Delta p = p_{\infty} - p_r$ 。

其中V.Bjerknes公式不适用于台风外域的气压计算;高桥公式不适用于台风中心附近的气压计算;藤田的公式和Myers公式在台风内域或外域都能较好的吻合。本章采用Myers公式计算台风气压场,其中最大风速半径 R_0 采用公式(C.0.6-6)(Graham Nunn,1959)计算:

$$R_0 = 28.52 \tanh \left[0.0873 (\phi - 28) \right] + 12.22 / \exp \left[(p_{\infty} - p_0) / 33.86 \right] + 0.2 V_t + 37.22 \quad (\text{C.0.6-6})$$

式中: ϕ ——为纬度;

 V_t ——为移行风风速。

台风风场由气压梯度和台风移动导致的风速合成而成:

$$W_{X} = C_{1}V_{tx} \exp\left(-\frac{\pi}{4} \frac{r - R_{0}}{R_{0}}\right) - C_{2} \left\{-\frac{f}{2} + \sqrt{\frac{f^{2}}{4} + \frac{(P_{\infty} - P_{0})}{\rho_{a}R_{0}^{2}}} \left[1 + \left(\frac{r}{R_{0}}\right)^{2}\right]^{-\frac{3}{2}}\right\}.$$

$$\left[(x - x_{0})\sin a + (y - y_{0})\cos a\right]$$
(C.0.6-7)

$$W_{y} = C_{1}V_{ty} \exp\left(-\frac{\pi}{4} \frac{r - R_{0}}{R_{0}}\right) + C_{2}\left\{-\frac{f}{2} + \sqrt{\frac{f^{2}}{4} + \frac{(P_{\infty} - P_{0})}{\rho_{a}R_{0}^{2}}} \left[1 + \left(\frac{r}{R_{0}}\right)^{2}\right]^{-\frac{3}{2}}\right\}.$$

$$\left[-(y - y_{0})\sin a + (x - x_{0})\cos a\right]$$
(C.0.6-8)

式中:

 W_x , W_y ——为合成风速在 x、y 方向上的分量; V_{tx} , V_{ty} ——为台风移动速度在 x、y 方向上的分量;

 C_1 , C_2 ——为经验系数;

a——为考虑大气边界层影响之后梯度风的偏角(称为入流角);

 ρ_a ——为大气密度。

附录 D 一维-二维耦合水动力模型

D.0.1 如下图所示,一维河道与二维区域通过上下游型连接方式实现一维-二维水动力数学模型的纵向耦合,如图 D.0.1 所示:

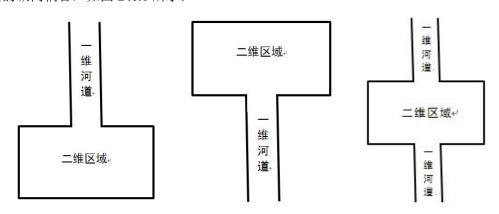


图 D.0.1 一维-二维纵向耦合示意图

D.0.2 纵向耦合界面处需要满足水位、流量约束条件,即一维断面水位与二维边界网格平均水位相等;一维断面流量与二维边界网格总流量相等。

D.0.3 可采用水位预测-校正法进行纵向耦合求解。即一维模型中,耦合界面定义为水位边界;二维模型中,耦合界面也定义为水位边界。假设耦合界面有一个初始水位(根据上一时刻已知解预估计出耦合边界处的水位值),则以该水位分别作为一维模型和二维模型的边界值,可分别得到相应的一维边界断面流量值,以及二维边界网格总流量值,继而得到耦合边界净流量 Q_c 。根据汊点水位预测校正法,利用 Q_c 对水位边界条件进行校正,直至 Q_c 满足规定的计算容差后终止迭代计算。迭代计算过程中,水位校正增量由下式给定:

$$\Delta \eta = \frac{Q_c}{2\alpha B_c \sqrt{gh_c}} \tag{D.0.3}$$

式中 B_c , h_c —一分别为耦合边界处的河宽和水深;

α——为模型参数,取5。

注: 计算容差由用户输入控制,包括误差百分比、最大绝对误差、最小绝对误差,以及最大迭代计算次数。

D.0.4 如下图所示,一维河道与二维区域通过堤防型连接方式实现一维-二维水动力数学模型的侧向耦合。

图 D.0.4 一维-二维水动力数学模型侧向耦合示意图

D.0.5 对于侧向耦合计算,在未发生溃堤或漫堤时,只进行一维河网非恒定流计算。当发生溃堤或漫堤后,开始进行一维-二维耦合数学模型计算,即通过一维河网水动力学模型计算将耦合界面处的水位传递给二维数学模型,进而根据二维水动力学模型计算得到耦合界面处的流量,再传递回给一维数学模型作为旁侧入流边界。

D.0.6 对于溃堤洪水,溃口处的流态可近似为堰流。若溃口形状较为规则,且溃口处洪水的流态与宽顶堰流较为接近,则可采用传统方法宽顶堰流公式计算溃口流量:

$$\begin{cases} Q = C_d L(z_1 - z_w)^{1.5} & \text{if } \frac{2}{3}(z_1 - z_w) \ge (z_2 - z_w) \\ Q = \frac{3^{1.5}}{2} C_d L(z_2 - z_w) (z_1 - z_2)^{0.5} & \text{if } \frac{2}{3}(z_1 - z_w) < (z_2 - z_w) \end{cases}$$
(D.0.6)

式中: Q——为耦合界面的流量绝对值;

 z_{1d} , z_{2d} ——分别为一维、二维模型在耦合界面处的水位, z_1 =max(z_1d , z_2d),

 $z_2=\min(z_1d, z_2d);$

 z_w ——为耦合界面的底高程;

 C_d —一为流量系数;

L——为矩形溃口的宽度。

若溃口形状较为复杂,则可采用 Riemann 求解器计算溃口流量。即在二维模型中,各耦合边界被定义为独立的水位边界,其边界节点的水位值由相邻两个断面的水位按照反距离插值得到。类似地,通过插值得到边界节点的流速,流速方向可默认为与耦合边界平行,也可设置流速与耦合边界的夹角。不同于常规的基于 Riemann 不变量的水位边界通量计算方法,耦合边界处通过构造 Riemann 问题计算数值通量,即将插值得到的边界水位与流速、耦合边界处二维网格单元状态分别作为 Riemann 问题的左侧、右侧初始值,进而利用 HLLC 算子进行求解。对耦合边界包括的二维模型水位边界边的物质通量进行求和,即得到该耦合边界的流量。

D.0.7 一维-二维模型采用异步计算的方式进行耦合求解。一维模型运行 N 步,将河网状态由当前时刻 t 更新至下一时刻 t+ Δ t1d;相应地,二维模型运行 M 步,其中,前 M-1 步的时间步长 Δt_{2a}^{i} ($i=1,2,\dots,M-1$)由 CFL 条件控制,第 M 步的时间步长为:

$$\Delta t_{2d}^{M} = \Delta t_{1d} - \sum_{i=1}^{M-1} \Delta t_{2d}^{i}$$
 (D.0.7)

式中 Δt_{1d} 一为一维模型的固定时间步长;

 Δt_{2d} ——为二维模型的自适应时间步长;

M——为运行步数,其应满足条件 $0 \le \Delta t_{2d}^M < \Delta t_{CFL}$, Δt_{CFL} 为由 CFL 条件动态控制的二维模型最大时间步长。

附录 E CPU 多核并行计算模式

E.0.1 CPU 多核并行属于共享存储模式,而 OpenMP 是共享存储编程模型的标准,是基于 线程的并行编程模型。OpenMP 在并行程序执行时,采用的是 Fork-Join 的方式,如下图 E.0.1 所示。程序开始只有一个主线程,程序中的串行部分都由主线程执行,并行部分通过派生从 线程来执行;并行部分全部结束后才能执行后续的串行部分程序。

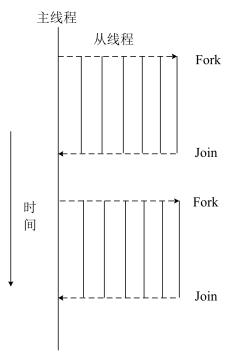


图 E.O.1 Fork-Join 并行机制

- E.0.2 OpenMP 编程环境由编译指导语句、运行库函数和环境变量组成。其中,编译指导语句用于指示编译器如何将串行程序转换成并行程序;运行库函数主要包括执行环境函数、锁操作函数和时间操作函数,提供了获取和处理 OpenMP 线程信息、操作变量属性等功能;环境变量用于控制并行执行的方式。
- E.0.3 Cache 命中率是影响多核并行计算性能的主要因素。需要运用数组合并、循环交换、关键数据提取、循环合并等方法进行 Cache 命中率优化设计,以提高 CPU 多核并行计算效率。
- E.0.4 数组合并即将两个或多个串行数组合并为一个数组,以避免顺序范围各数组时可能产生的 Cache 冲突失效。该技术主要通过提高空间局部性来减少 Cache 失效次数。数组合并示例如下所示:
 - 1 合并前: int array1[N]; int array2[N];
 - 2 合并后: struct merge {int array1; int array2}; struct merge array[N]。
- E.0.5 循环交换即将循环维度进行优化调整。对于嵌套循环,程序可能没有按照数据在内存中的存储顺序访问。以按行存储为例,若要提高访存效率,则应根据存储顺序来访问。优化前的跳步访问代码如下图 E.0.5-1 所示,优化后的顺序访问代码如下图 E.0.5-2 所示。

```
For (j = 0; j < N1; j++)

For (i = 0; i < N2; i++)

{

A[i][j]=B[i][j]*C[i][j]
}
```

图 E.0.5-1 优化前的跳步访问代码示例

```
For (i = 0; i < N2; i++)

For (j = 0; j < N1; j++)

{

A[i][j]=B[i][j]*C[i][j]
}
```

图 E.0.5-2 优化后的顺序访问代码示例

E.0.6 关键数据提取可以减少数据的重复存取,并减少 Cache 容量要求,降低其失效率。例如在排序算法中,可以用关键字和指针来代替整个记录排序,这样就让 Cache 无需存放其无关数据,使 Cache 得到充分利用以存放更多的数据。

E.0.7 循环合并即将程序中几部分独立运算的相邻循环区域进行合并。如下图 E.0.7-1 所示,程序可能存在相同循环访问同一数组,并对同一数组作不同运算。这样的结构可以合并在一起,合并后可获得更好的空间局部性,降低 Cache 失效。循环合并优化后如图 E.0.7-2 所示。

图 E.0.7-1 循环未优化的代码示例

```
For (i = 0; i < N2; i++)

For (j = 0; j < N1; j++)

{

A[i][j]=B[i][j]*C[i][j]

D[i][j]=A[i][j]*C[i][j]

}
```

图 E.0.7-2 循环优化后的代码示例

附录 F GPU 并行计算模式

- F.0.1 进行 GPU 并行计算模式设计时,首先需要分析模型的计算密集型区域,并针对该区域的计算过程,设计适合并行计算的算法流程,以充分利用 GPU 数以千计的线程进行计算; 其次,需要最大限度减少 CPU 与 GPU 之间的数据交换,以提高并行计算效率。
- F.0.2 从程序实现角度,串行模型的 GPU 并行化改造工作主要包括数据管理和循环并行化 两个方面。
- F.0.3 在数据管理方面,为最大限度减少 CPU 与 GPU 之间的数据交换,CPU 完成数据初始化后,在 GPU 中开辟全局变量空间,并将 CPU 全局变量值拷贝至 GPU; 在 kernel 循环启动计算时,不再涉及 CPU 与 GPU 数据传递;仅在需要输出计算结果的时候,将 GPU 的水深、流速等计算结果拷贝回 CPU 主存空间。数据流程如下图所示。

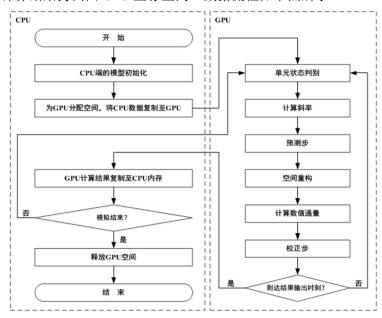
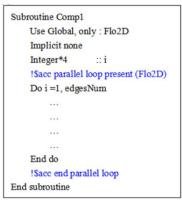
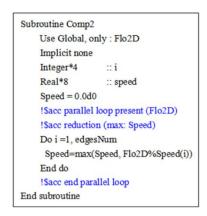




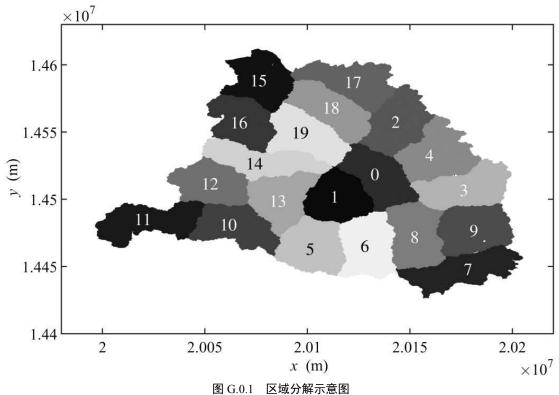
图 F.0.3 GPU 并行计算数据流程图

F.0.4 在循环并行化方面,考虑数据依赖性,基于 OpenACC 的循环并行化实现可分为 2 种情况,1) 不存在规约及原子操作的循环; 2) 需要进行规约的循环。下图分别为这 2 种情况的并行化实现方法。

(a) 不存在规约及原子操作的循环

(b) 需要进行规约的循环

图 F.0.4 基于 OpenACC 的循环并行化实现示意图


F.0.5 基于 OpenACC 的代码并行化包括数据 CPU 端初始化、将数据由 CPU 拷贝至 GPU、GPU 端并行计算、将计算结果由 GPU 拷贝至 CPU 等主要步骤,如下图所示。

```
program main
 implicit none
 integer, parameter :: N = 256
 integer a(N), b(N), c(N)
 integer i
 ! CPU 端数据初始化
 do i = 1, N
  a(i) = 0
 b(i) = i
 end do
 ! 将数据由 CPU 拷贝至 GPU, GPU 端并行计算,
 ! 计算完成后,将计算结果由 GPU 拷贝至 CPU
 !$acc kernels create(a) copyin(a, b) copyout(b)
 do i = 2, N
   a(i) = b(i-1) + b(i)*a(i)
 end do
 do i = 2, N
   b(i) = a(i)
 end do
 !$acc end kernels
 !输出计算结果
 print*, "b(N) = ", b(N)
end program
```

图 F.0.5 基于 OpenACC 的代码并行化示意图

附录 G 基于区域分解的分布式并行计算模式

G.0.1 当计算网格数量大于 100 万时,普通的单机 CPU 多核并行或 GPU 并行的计算速度 仍难以满足洪水实时模拟需求。因此,需要将整个模拟区域分解为若干个有或无水力耦合关系的子区域,如图 G-1 所示。

G.0.2 一般情况下,二维数学模型多采用显式格式求解。此时,单个计算时间步长内,单元之间界面的通量仅取决于界面两侧单元的水深、流速等。因此,在每个计算时间步长内,只需共享各相邻区域间边界位置的网格水深、流速等信息。相邻区域界面网格分布如下图 G.0.2 所示。

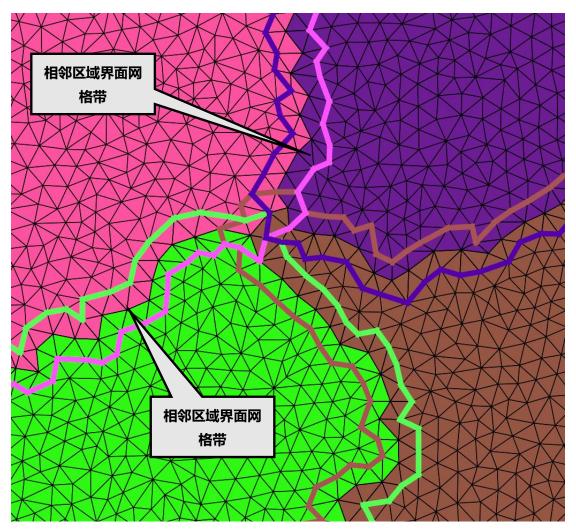


图 G.0.2 相邻区域界面网格分布示意图

- G.0.3 相邻区域界面网格带内各网格水深、流速等需要通过消息传递模式进行共享,该过程较为耗时。当相邻区域界面地形较高可阻隔洪水传播时,界面两侧网格实际无水力耦合关系,因此不需要信息共享。
- G.0.4 MPI 是一种消息传递函数库标准,被广泛用于分布式并行计算中。如图 G.0.4 所示,分布式并行计算编程的基本流程包括:
- 1 划分各子进程的并行计算任务,即将整个模拟区域分解为多个子区域,从而将整个区域的洪水演进模拟转化为多个子区域的洪水演进模拟;
- 2 消息传递:包括主处理器与子处理器之间的传递及子处理器之间的传递,两者都是为了进行下一步计算而进行的数据传递;
- 3 消息接受:每一个参与计算的子处理器接受主处理器传来的数据和指令,并开始计算;
- 4 结果汇总:将每个参与计算的主处理器的计算结果传递回主处理器进行汇总输出。由图可知,为提高模型计算效率,基于 MPI 的分布式并行计算模式设计时主要考虑减少进程等待时间和通信时间。

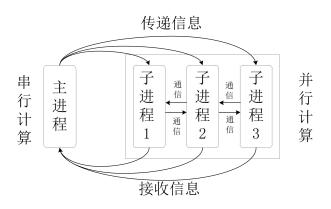


图 G.0.4 分布式并行计算模式下各进程间消息传递

G.0.5 为减少进程间消息传递时的等待时间,宜采用非阻塞通信方式进行进程间消息传递。即当主进程调用消息传递函数且不能立刻得到某子进程计算结果之前,该函数不会阻塞当前线程,而会立刻返回。基于非阻塞通信方式的二维洪水数学模型求解流程如图 G-4 所示。

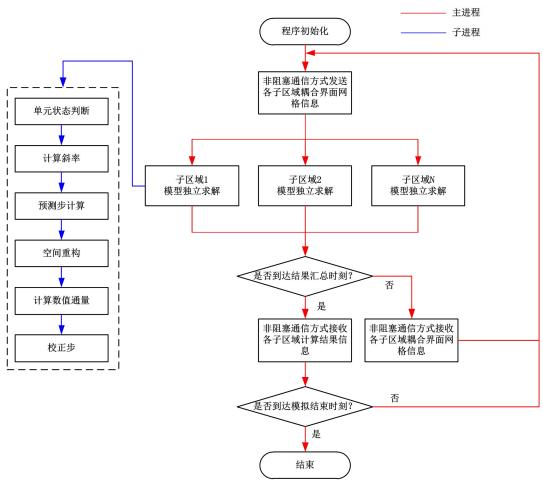


图 G.0.5 基于非阻塞通信方式的二维洪水数学模型求解流程图

G.0.6 为减少 CPU 通信时间,程序设计时需对整个程序中 CPU 间通信的数据量和次数进行统计,删掉重复和非必须的通信数据;然后,将通信数据进行打包,化零为整,减少通信次数。

ICS 编号 CCS 编号

团体标准

T/CHES XXX—20XX

洪水实时模拟技术规程

条文说明

目 次

1	总	则	41
3	基础	资料	42
4	模型	及计算方法选择	43
	4. 1	水动力模型选择	43
	4.2	快速计算方法选择	43
	4.3	计算模式并行化要求	44
5	洪水	45	
	5. 1	基本要求	45
	5. 2		
	5. 3	计算断面和网格剖分	
	5. 4	初始及边界条件设置	46
	5.6		
	5. 7	计算结果分析与展示	
6	洪水实时模拟模型接口		
	6. 1	基本要求	48
	6.2	数据交互流程	48
	6.3	数据类型定义	48
	6.4	气象水文数据接口	48
	6. 5	河网结构数据接口	48
	6.6	网格地形数据接口	51
	6.7	模型参数接口	51
	6.8	模拟结果数据接口	51

1 总 则

- 1.0.1 洪水实时模拟是洪灾实时预报预警中的关键技术,目前国内尚无相关技术标准。针对洪水数值模拟模型产品多、性能及数据接口差异大的现状,总结国内外相关主流模型产品的特点,制定本标准,对规范洪水实时模拟方法、提高洪水模拟成果的科学性、准确性、时效性和通用性,为流域和区域洪水实时预报预警提供及时可靠的技术支撑具有十分重要的意义。
- 1.0.2 洪水实时模拟主要用于洪水实时预报预警,在实际中,洪水预报预警系统一般需将实时水情预报结果或实测洪水过程作为洪水实时模拟水文边界条件,模型计算结果则通过系统界面进行综合展示,因此,洪水实时模拟一般通过模型系统集成进行应用。
- 1.0.4 洪水实时模拟并非洪水实时预报,而是以洪水实时预报为边界,对流域尺度洪水过程进行精细化、快速动态计算,以实时、滚动模拟水流在河道、城区及非城区、河口及外海区域的传播过程。当应用场景为城区地表洪水演进模拟时,需考虑除管网外的城市防洪排水系统的影响。本标准重点针对水文边界的实时状态及实时预报过程,形成实时、滚动模拟。
- 1.0.5 流域和区域常见的洪水类型包括山区及平原河流洪水、感潮及非感潮河网洪水,外海-河口区的天文潮及风暴潮,溃坝洪水、溃堤洪水、漫堤洪水。本标准不包括游荡性河流洪水、凌汛洪水、城市暴雨内涝洪水、山区泥石流洪水。
- 1.0.6 洪水实时模拟应用模式包括实时数据接入、数据转换、滚动计算等主要步骤,因此,本技术规程包含模型及其接口的要求。

3 基础资料

- 3.1.2 地形资料常见形式为数字高程模型 (DEM)、高程散点,主要用于一维模型的河道断面地形赋值和二维模型的网格地形赋值。交通道路、土地利用数据通常为面要素或线要素的矢量格式,其中交通道路数据主要用于二维模型中对道路的阻水(或行洪)作用进行概化;土地利用数据主要用于二维模型中网格糙率取值。遥感影像通常为栅格格式,主要用于辅助模型边界范围确定、土地利用类型识别、历史洪水淹没范围识别等。
- 3.1.3 降雨、水位、流量、潮汐、台风等实测资料主要用于模型边界取值,设计资料主要用于辅助确定建模范围。水文控制站水位-流量关系主要用于一维模型下边界设置。湖泊、水库、蓄滞洪区的水位-面积-容积关系主要用于概化湖泊、水库、蓄滞洪区对洪水的容蓄作用。
- 3.1.4 工程调度资料主要用于模型中对各类水工建筑物进行概化,其中需重点收集:
 - 1 水库: 库容曲线、泄流曲线、防洪调度规则等;
 - 2 水闸:位置、闸孔数量、净宽、闸底高程、起闭时间、调度规则等;
 - 3 泵站:位置、起排水位、止排水位、设计最高外水位、设计抽排流量等;
 - 4 堤防:位置、堤顶高程、防洪标准、设计水位、预警水位等;
 - 5 桥梁:桥梁形式、桥墩位置、桥墩尺寸、梁底高程、桥面高程等;
 - 6 涵洞: 涵洞形式、位置、尺寸、底高程、顶高程等。
 - 7 堰坝:位置、尺寸等。
- 3.1.5 历史洪水资料主要用于模型的率定验证。实测洪水过程可通过查阅水文测站历史数据获取。河道沿程及淹没区水位可通过查阅相关洪水调查报告或进行实地洪痕调查获取。洪水淹没范围、淹没历时等可以通过查阅相关洪水调查报告、实地调查、历史遥感影像判读等方式获取。
- 3.1.6 当收集到的实测地形(或河道断面)数据无法覆盖建模范围或数据精度无法满足洪水实时模拟建模要求时,应开展地形(或河道断面)补充测量工作;当收集到的水文资料无法满足模型率定验证资料需求时,应根据模型率定验证需要,在汛期开展水文同步测验工作。
- 3.1.7 当模拟区域内由于水利工程设施建设、河道整治等因素导致河道地形发生较大变化时,应对模型的一维河道断面数据进行更新;当模拟区域内由于城市开发、道路建设等因素导致地形发现较大变化,对洪水演进有明显影响时,应对模型的二维地形数据进行更新;当模拟区域内新建水闸、泵站、堰坝等水利工程或原有水利工程调度规则发生变化时,应对模型中相应的水利工程概化进行更新。

4 模型及计算方法选择

4.1 水动力模型选择

- 4.1.1 在实际应用中,洪水实时模拟需满足稳定性好、计算速度快、模拟结果可靠等一般性要求。模型可根据实时边界条件,在任意初始场条件下快速计算收敛至合理的初始场,在此过程中不需要人工调试。当研究区域涉及城区时,需要考虑城市排涝工程的调度运行过程,并对管网排水过程进行适当概化处理。
- 4.1.2 从兼顾计算精度与效率的角度,河道及河网洪水模拟宜采用一维水动力模型;堤坝溃决(漫溢)洪水模拟宜采用一维-二维耦合水动力模型。在需要计算与展示河道内洪水流态时,河道及河网洪水模拟、堤坝溃决(漫溢)洪水模拟需采用全二维水动力模型。为保证模型可靠性,宜采用《洪水风险图名录》中的软件。
- 4.1.3 流域尺度河网中可能同时存在山区陡峭河道及平原河网,此时河道及河网洪水数学模型需适应山区及平原河网洪水模拟。当河网较为复杂时,系统或人工难以直接给定准确的初始场,模型需要根据边界条件在任意初始场条件下可快速计算收敛至合理的初始场。有限体积法和有限差分法具有计算精度高、收敛速度快等优点,满足河道及河网洪水实时模拟需求。
- 4.1.4 河口沿海风暴潮模型宜考虑风及气压梯度对潮流的驱动、风生浪、波流相互作用等过程。应结合具体的河口地形及形态特征,分析近岸波流破碎形成的沿岸流对河口潮流运动的影响,若影响较小则可忽略风生浪及波流相互作用。常见的台风理论气压场模型包括 V.Bjerknes 模型、高桥模型、藤田模型、Myers模型、Jelesnianski 模型等,移行台风的非对称风场模式包括宫崎正卫公式、Jelesnianski 公式、上野村夫公式等,具体公式见附录 C。条件具备的情况下,推荐将气象混合风场与台风经验模型风场进行融合,以兼顾台风外围风场的可靠性及台风中心附近的精度。实际应用中,应具体分析不同台风气压场及风场模式的适应性,并选取合适的公式及参数。河口沿海风暴潮模型求解方法宜采用有限体积法、有限差分法、欧拉拉格朗日法等计算方法。
- 4.1.5 堤坝溃决(漫溢)洪水常存在间断解,要求数学模型必须具备守恒性,且具有能计算急缓流交替的性能。由于堤坝溃决(漫溢)洪水是强非恒定流,选用的数值格式应具备能模拟这种非恒定性极强的水流运动,如有限体积法、有限元法。

4.2 快速计算方法选择

- 4.2.1 模型计算耗时取决于计算总步数以及单步计算速度。假设模拟的总时段长度固定,若计算时间步长越大、单步计算速度越快,则模拟总步数越小、计算耗时越少。快速计算格式及并行计算模式可显著提高单步计算速度,而动态计算时间步长法可有效减少计算总步数,这三种方法的有效集成是实现洪水快速计算的主要途径。
- 4.2.2 二维洪水数学模型一般可用一阶精度格式、二阶精度格式求解。由于地形是影响洪水演进过程的主要因素,在同等地形概化精度条件下,一阶精度格式与二阶精度格式的计算结果差异较小,但一阶精度格式计算速度要显著高于二阶精度格式。因此,在保证地形建模精度的条件下,宜选用一阶精度数值格式,以兼顾计算精度与速度。
- 4.2.3 对于二维洪水数学模型,为保证数值计算稳定性,计算时间步长需满足一定的限制条件。根据 CFL 条件,水流波速越小、网格尺寸越大,则计算时间步长越大。一方面,虽然洪水模拟一般采用固定网格,但由于水流状态是变化的,因此满足 CFL 条件限制的计算时间步长也是变化的,故宜采用自适应动态调整的计算时间步长,以保证每一步计算时都能采用较大的计算时间步长。另一方面,假设整体网格尺寸较大、仅存在局部加密的细网格,若采用局部时间步长法,则大网格采用较大的计算时间步长、小网格采用较小的计算时间步长的异步计算模式,且按固定时段长度进行两者的计算同步,可在一定程度提升计算效率。

- 4.2.4 一维、二维水动力模型的计算时间步长差异较大。为避免一维、二维模型同步计算存在冗余的问题,宜采用异步计算模式,并按固定时段长度进行一维模型与二维模型的数据同步。固定时段长度一般宜大于一维、二维模型计算时间步长,且宜小于 5min。当一维模型采用固定时间步长时,固定时段长度宜等于固定时间步长的整数倍。
- 4.2.5 一般情况下,计算机普通配置均支持 CPU 串行及多核并行计算,而 GPU 并行计算则需要专门的图形计算显卡等硬件资源。当模型计算量较小、CPU 串行计算即可满足实时模拟需求时,宜首选 CPU 计算模式。当计算网格数量大于 5万,且具备 GPU 计算硬件条件时,宜采用 GPU 并行计算模式。当计算网格数量大于 100 万时,宜采用基于区域分解技术的分布式并行计算模式。

4.3 计算模式并行化要求

- 4.3.1 一般情况下,并行计算代码编制主要是在串行计算代码基础上,通过分析各类循环计算代码区的可并行性,对具有可并行特征的计算代码进行并行化升级。因此,串行计算代码是基础,且串行计算结果可作为验证模型计算代码并行化是否正确的依据,即务必保证串、并行计算结果完全一致。
- 4.3.2 CPU 多核并行属于共享内存并行,即在共享内存系统中多个处理器上的进程共享同一内存中的数据,并对数据进行操作。由于 Cache 数据访问速度快而内存速度慢,CPU 在运行计算任务时,通常把经常访问到的数据都存储在 Cache 里。当程序设计不合理时,就会出现 Cache 数据的频繁交换,从而显著降低处理器计算性能。因此,需要运用数组合并、循环交换、关键数据提取、循环合并等方法进行 Cache 命中率优化设计,以提高 CPU 多核并行计算效率。
- 4.3.3 由于 CPU 与 GPU 之间通过 PCIe 接口进行数据传输,数据传递耗时、低效,因此,需要最大限度减少 CPU 与 GPU 之间的数据交换,即在 CPU 初始化完成后,在 GPU 中开辟全局变量空间,并将 CPU 全局变量值拷贝至 GPU; 在 kernel 循环启动计算时,不再涉及 CPU 与 GPU 数据传递;仅在需要输出计算结果的时候,将 GPU 的水深、流速等计算结果拷贝回 CPU 主存空间。
- 4.3.4 由于分布式并行化计算中各进程间通过 MPI 进行数据交互,在保证子进程独立计算效率的前提下,各进程间的数据交互是决定分布式并行化计算效率的关键。主进程与子进程之间、各子进程之间的数据交互包括信息的传递与接收,涉及数据访问请求、数据通信、状态返回等步骤。因此,需要优化各进程间的数据交互方式,尽量减少进程间消息传递的等待时间和通信时间,以提高分布式并行计算效率。

5 洪水实时模拟模型构建

5.1 基本要求

- 5.1.1 一般洪水模拟的主要技术流程包括建模范围确定、计算断面和网格剖分、边界条件设置、模型率定验证、计算结果分析与展示。洪水实时模拟在遵循一般洪水模拟技术流程的基础上,对模拟计算耗时有明确的要求。因此,洪水实时模拟主要技术流程在一般洪水模拟主要技术流程的基础上,增加计算耗时控制环节,并重点围绕模型效率对其它环节提出新的技术要求。
- 5.1.2 一般情况下,洪水模拟主要应用于规划、设计等方面,对模型精度要求较高,但对计算耗时无具体要求。洪水实时模拟主要应用于洪灾实时预报预警,计算耗时在一定程度上影响防灾减灾决策的有效性,因此,洪水实时模拟对模型计算效率要求较高,需要兼顾模拟精度和计算效率。一般而言,对模型精度要求越高,则要求建模精细化程度越高,导致计算耗时增加。为保证模型计算结果可靠性与时效性,需要寻找满足精度与效率要求的平衡点。

5.2 建模范围确定

5.2.1 执行本条规定时需注意以下问题:

- 1 具备水文预报条件的控制断面指防汛部门目前正在使用的水文预报断面或未来准备用于水文预报 的控制断面,通常为水文站点所在位置;具备稳定水位~流量关系的控制断面通常选择在水位~流量关系稳 定的水文站点处或河道顺直且下游不受顶托的河段;水位相对稳定的大水体是指海域或大型水库、湖泊等 水位不会受模拟河道洪水过程明显影响的水体。
- 2 历史最大量级洪水(或超标准洪水)可能淹没范围可采用历史最大量级洪水(或超标准洪水)的洪水水面线加上一定的裕度后与沿程地形比较,以地面高程低于考虑裕度后的洪水水面线的范围确定;较大规模河流超标准洪水宜选用 200 年一遇以上洪水,中等及以下规模河流超标准洪水宜选用 100 年一遇以上洪水;若河道周边地面高程均低于考虑裕度后的洪水水面线,可采用较大网格模型试算的方法确定可能淹没范围;洪水水面线裕度建议取 1~2m。可选用校核水位下水库大坝瞬溃情景作为极端条件溃坝洪水情景,极端条件溃坝洪水可能淹没范围可采用较大网格模型试算的方法确定。

5.2.2 执行本条规定时需注意以下问题:

- 1 超防潮标准潮位宜选用 500 年一遇以上设计潮位。
- 2 不受径流影响、具备潮位预报条件的外海边界具体指距河口距离较远,潮位不受径流影响,周边有潮位站控制,可通过调和分析技术预报潮位的边界。

5.3 计算断面和网格剖分

- 5.3.1 计算断面间距宜与河宽相当指计算断面间距宜取平均河宽的 1-10 倍。
- 5.3.2 执行本条规定时需注意以下问题:
- 1 可采用不同尺度网格试算的方法确定误差在可接受范围条件下的最大尺度网格。以最精细网格的计算结果为基准,分析其他尺度网格的模拟误差,选择误差可接受范围条件下的最大尺度网格。例如,对某研究区域,在网格平均边长 10m~300m 范围内 20m 递增的间隔剖分得到多套网格,并将多套网格用于同一场典型洪水模拟计算。以 10m 边长网格计算得到的淹没范围,特征点水位、淹没水深、淹没历时及洪水到达时间等结果为基准,分析其它尺度网格计算结果,根据模拟精度要求选择计算误差在可接受范围内的最大尺度网格为最终采用网格。
- 2 由于外海海域地形通常采海图中的数据,比例尺较小。因此在进行外海域网格剖分尺度选择时,网格尺度宜与海图高程点间距接近。

- 3 不规则三角型或四边形网格可以对模拟区域范围、道路、铁路、堤防等边界和重点关注对象进行较好的贴合,有利于保证模拟精度。
- 4 高于地面的道路、铁路、堤防等阻水线状地物,以及河渠、低于两侧地面的道路等排水通道对洪水 演进过程有重要的影响。沿这些线状地物进行网格剖分,便于后期根据高程资料对网格地形进行精确修正, 提高模拟精度。
- 5 对于建筑物较为密集的城市建成区,网格尺寸需根据建筑物和街道密度进行调整,建议城市建成区沿主要建筑群和街道边界进行网格剖分,网格边长小于主要行洪街道宽度的1/2。
- 6 负载平衡是保证分布式计算效率的关键。在进行网格剖分与区域分解时,宜综合考虑硬件资源条件、可能淹没区分布及计算网格数量等,合理确定区域分解个数以及各区域的范围,保证各子区域可能淹没区范围网格数量基本相当。同时,从减少子区域间数据交换耗时的角度,需对子区域范围边界进行优化调整。例如,河道左、右岸防洪保护区均通过河道进行耦合计算,两岸保护区之间不涉及直接的边界数据传递;相邻区域被高山阻隔,洪水淹没过程相对独立,相邻区域间亦不涉及直接的边界数据传递。
- 7 在模型计算过程中计算效率主要受到最小时间步长网格的制约。可采用模型试算的方式定位模拟时间步长较小的网格,采用调整网格大小、形状、概化方式等方式对出现小时间步长的网格进行局部优化,提高计算效率。

5.4 初始及边界条件设置

- 5.4.1 洪水实时模拟通常是模拟未来一段时间洪水的演进、淹没情况。因此,需要采用水文气象实时预报成果作为边界条件。
- 5.4.2 预报潮位过程通常采用调和分析技术计算得到; 台风预报数据通常包括风场、压力场、台风路径等 预报数据。
- 5.4.3 由于在进行洪水预报预警时间,常需要根据洪水发生时的实时工情,选择可能发生溃口的险工险段,模拟堤防(或大坝)溃决的影响情况。因此,溃口的位置、尺寸、发展过程等参数应可进行实时定义。
- 5.4.4 洪水实时模拟的实时性主要体现在以实时更新的监测数据和预报数据为输入条件,通过模型快速计算技术实现模型快速滚动计算,得到可以实时更新的洪水演进模拟结果。
- 5.4.5 为确保模拟精度,在采用预报数据进行洪水实时模拟时,可采用前一个时段的实测数据计算得到预报时段起始时刻的初始场,例如:当前时间是7月1日00:00,要根据预报数据模拟7月1日00:00~7月3日23:00的洪水过程,此时,可采用6月30日00:00~7月1日00:00实测水文数据,计算得到7月1日00:00时刻的结果作为洪水实时预报模型的初设场。

5.6 计算耗时控制

- 5.6.1 从时效性角度看,洪水实时模拟耗时越短越好。但在实际操作过程中,需要综合考虑现有计算机硬件性能和快速计算方法的发展程度,确定模型计算耗时控制的要求,以满足洪水预报预警需要。从当前技术水平看,制约洪水实时模拟速度的主要因素为二维模型的计算速度。考虑到模拟区域面积大小对二维模型计算速度影响较大,将二维或一维-二维耦合洪水实时模拟模型计算耗时控制要求按二维模型区域面积划分了3个等级,并将最大计算耗时控制在10分钟以内完成24小时洪水演进及淹没过程模拟,基本可满足洪水实时预报预警工作需求;最高洪水频率指导致研究区域淹没范围接近最大可能淹没范围的洪水频率。模型的计算耗时与参与计算的网格数量呈正相关关系。相比于一般洪水,最高洪水频率洪水造成的淹没范围大,参与计算的网格数量多,计算耗时最长。因此,采用最高洪水频率条件下的洪水模拟时间来进行洪水实时模拟的计算耗时控制。
- 5.6.2 网格优化指通过调整角度过小、相邻单元面积变化剧烈的网格以及加大最小网格面积,加大计算时间步长;在快速计算方法的选择上,对于单机 CPU 多核或 GPU 并行计算效率无法满足要求时,宜考虑采用基于区域分解技术的分布式并行计算模式提高计算效率。

5.7 计算结果分析与展示

- 5.7.1 基础要素计算结果指常规洪水要素计算结果,主要是指水位、流量、流速等要素。由于洪水实时预报预警对洪水风险要素较为关注,因此在一般洪水模拟模型输出结果的基础上,增加输出洪水风险要素统计结果。
- 5.7.3 采用逐计算步进行统计的方法,可避免在基于输出结果统计时,由于模型结果输出时间步长大于计算时间步长所带来的采样误差。
- 5.7.4 执行本条规定时,可参考以下方法进行:
- 1 可以通过检查进入模型水量与流出模型水量之差是否与模型内部蓄水量变化相等,来判断模型的水量平衡。一般要求水量误差小于 5%。
 - 2 可以通过检查水位、流量过程是否出现震荡、是否出现不合理的大流速等方法来判断模型的稳定性。
 - 3 可以通过检查河道水面线是否出现间断、是否出现比降异常等方法来检判断河道水面线是否合理。
- 4 可以通过将经验公式计算得到的溃口流量与模型输出的溃口流量进行对比、检查溃口流量过程是否 出现异常震荡等方式,判断溃口流量过程是否合理。
- 5 可以通过检查洪水演进的总体的流向是否与地形的变化趋势匹配,是否出现流速过大的异常点等, 来判断总体流场分布是否合理。
- 6 可以通过检查阻水地物处的流场是否能反映其阻水作用,行洪通道处水流方向是否与其走向相同, 水工建筑物处流场是否合理等方式,判断各类特征地物处的流场特征是否合理。
- 7 可以通过检查洪水淹没范围是否出现间断、洪水到达时间是否符合离洪源距离近的区域洪水先到达的认知等方式,判断洪水淹没范围、洪水到达时间分布是否合理。

6 洪水实时模拟模型接口

6.1 基本要求

- 6.1.1 洪水预报预警等业务应用系统与洪水实时模拟模型间需要依靠统一的接口进行数据交互,以提高模型系统的通用性和兼容性。
- 6.1.3 本标准主要侧重于系统端与模型端之间的数据交互,相关接口内容主要包括数据格式和交互流程。相关数据格式与标识符主要依据《水利信息数据库表结构及标识符编制规范》(SL-478-2010)、《实时雨水情数据库表结构与标识符》(SL323-2011)、《实时工情数据库表结构及标识符》(SL577-2013)进行编写制定。

6.2 数据交互流程

6.2.1 为保证模型端与系统端的正常通信交互,数据接口及服务响应流程主要分为连接测试与数据传输两个阶段。首先为连通性测试,系统端发送接口连接测试请求,模型端如接收到请求则进行回应。连通性测试正常之后,基于具体数据接口,进行模型文件及参数的传输交互。

6.3 数据类型定义

6.3.1 系统端与模型端之间的数据交互主要包括各类特征点名称及位置、计算参数、水文气象边界时间序列等数据,涉及的数据类型共有字符串、数值、时间和 3 种。

6.4 气象水文数据接口

6.4.1 表 6.4-2 中, DataType=1 为流量, DataType=2 为水位。

6.5 河网结构数据接口

6.5.2 河流文件 Rive.shp 在 GIS 中示例如图 1:

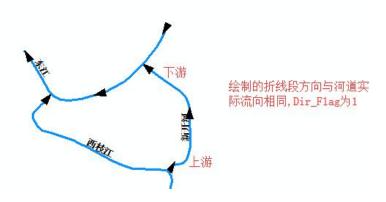


图 1 河流概化示意图

其中:

- 1 此文件中的河道均指自然河道,在 GIS 中以一条完整的折线段(中间不允许打断)表示;
- 2 River 图层属性表中河道名称必须唯一;
- 3 河流流向定义: 1 表示点绘的表示河道的折线段的方向与自然河道的实际流向(上游→下游)相同; 反之-1 表示与实际流向相反。基于该流向信息,自动化建模工具将按自然河道的实际流向(上游→下游)进行断面依次递增编号;

4 在模型文件中,同一条自然河道的河系中心线本身不能相交,不同的自然河道的河系中心线可以相交。在现实中,同一自然河道存在相交情况即分汊河道同名,若某自然河道在江心洲处分汊,则需要将同名支汊打断定义为新的自然河道(例如 XXX 河_XXX 位置_左支汊、XXX 河_XXX 位置_右支汊),如图 2:

图 2 江心洲同名河道概化示意图

6.5.3 断面是进行河道概化的重要元素。在前处理文件中,断面可以在 GIS 中用两点折线表示。断面文件 DM.shp 在 GIS 中示例如图 3:

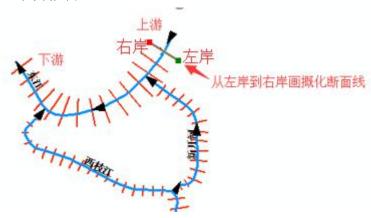
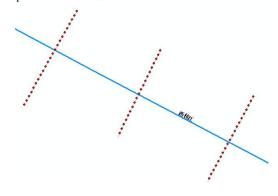



图 3 断面概化示意图

其中:

- 1 DM 图层属性表中的 River_Name 应与 River 图层保持一致;
- 2 断面起点指自然河道左岸点,断面终点指自然河道右岸点(左右岸区分:顺着自然河道流向左侧即左岸,右侧即右岸);
 - 3 Lpx、Lpy 等坐标必须为投影坐标(非经纬度)。
- 6.5.4 断面高程点散落在断面线上,是进行河道断面地形概化的重要元素。 断面高程点文件 DM Point.shp 在 GIS 中示例如图 4:

图 4 断面高程点概化示意图

其中:

- 1 断面高程点属于与之最近的断面 Line,故高程点与断面 Line 之间的距离偏差不宜过大,最好小于 1m (建模自动化工具中可以设置距离误差允许值);
 - 2 Px、Py 必须为投影坐标(非经纬度);
 - 3 Pz 为高程值,单位 m。
- 6.5.5 汊点是表示河网拓扑的重要组成部分。汊点文件 Junction.shp 在 GIS 中示例如图 5 (图中红色×):

图 5 河道汊点概化示意图

其中:

- 1 Junction 图层属性表中的 River_Name 需与 River 图层保持一致,且使用"&&"连接不同的自然河道名称;
 - 2 Px、Py 必须为投影坐标(非经纬度);
 - 3 River Num 与对应的 River Name 中的连接的自然河道总数应保持一致;
- 4 在同一自然河道的相邻两个汊点、边界点与相邻汊点形成一个计算河段,任意计算河段至少保证有两个断面 Line, 所以汊点前后也至少有两个断面;
- 5 汊点与河道中心线的距离小于允许值,则认为汊点位于该河段中心线上(一个汊点至少属于两个河段)。建模自动化工具中,可以设置汊点与河道中心线的距离误差允许值。一般情况下,建议该误差允许值不大于 50m。在实际操作过程中,可以先设置一个较小的误差允许值,如果建模自动化工具提示错误则逐步增加该值。
- 6.5.6 边界决定了模型的计算范围。边界文件 BC.shp 在 GIS 中示例如图 6:

图 6 河流边界概化示意图

其中:

- 1 BC_Name 应取名为该位置的水文站点名称,或该自然河道名称,以便后续模型计算时容易理解断面位置;
 - 2 边界类型中 BC Type 字段,流量边界定义为 2,水位边界定义为 1,水位-流量关系边界定义为 3;
 - 3 BC x、BC y 必须为投影坐标(非经纬度);

4 若某断面 Line 的中心点(Mpx, Mpy)与(BC_x, BC_y)距离最近,则视该断面为此边界点指定的边界断面。

6.6 网格地形数据接口

- 6.6.2 节点序号为从1开始的紧致升序整数。
- 6.6.3 常用计算单元类型分为三角形和四边形单元。Type=3 为三角形单元,Type=4 为四边形单元。当网格为三角形单元时,N4 赋值为 0。

6.7 模型参数接口

- 6.7.5 考虑到不同模型之间部分参数的差异,河网模型计算参数接口中预留了4个双精度浮点型、4个整型变量,可用于自定义参数交互。
- 6.7.8 常用计算格式精度分为一阶精度和二阶精度,ORDER =1 为一阶精度,ORDER =2 为二阶精度。计算时间步长模式分为固定时间步长模式和自适应调整时间步长模式,UFTS =T 为固定时间步长模式,UFTS =F 为自适应调整时间步长模式。MLTSL 一般取值 1~4,全局时间步长时 MLTSL=1,视网格尺寸差别情况综合设置该值。二维数学模型计算参数接口中预留了 4 个双精度浮点型、4 个整型变量,可用于自定义参数交互。
- 6.7.10 流量误差控制参数用于纵向耦合计算时,汊点水位预测-校正循环计算收敛判断。假设耦合界面处,一维模型流量为 Q_1 ,二维模型流量为 Q_2 ,则流量误差为:Qerror=abs(Q_1 - Q_2);用于控制计算收敛的误差阈值为:

$$Q=\min(\max(RATEQ*(Q_1+Q_2)/_2,MINQ),MAXQ)$$
 (1)

式中: 当 Qerror<=Q 时, 计算收敛。

6.8 模拟结果数据接口

- 6.8.1 一维模拟结果数据按设置的结果输出时间步长,按独立文件输出。
- 6.8.2 二维模拟结果数据按设置的结果输出时间步长,按独立文件输出。
- 6.8.3 洪水风险要素数据在模拟结束时输出。
- 6.8.4 一维-二维纵向耦合界面计算结果按设置的结果输出时间步长,在同一个文件中输出。
- 6.8.5 一维-二维侧向耦合界面计算结果按设置的结果输出时间步长,在同一个文件中输出。